
大数据是人类又一个技术乌托邦_数据分析师培训
说到大数据,最近互联网各种热词很多,各种概念满天飞,其中不乏有忽悠一说。大数据到底是什么,会给我们生活带来哪些影响?
【大数据是一个时代,“国家队”很及时】
去年底宣布的一个事情,将对未来有深远影响,现在大家还没意识到。
2013年11月19日,国家统计局与11家国内企业签署战略合作框架协议,合作内容涉及大数据应用统计标准,以及企业数据补充政府统计数据等领域。有分析称,在大数据国家战略日益强烈的情况下,统计局介入将进一步推动大数据的应用落地。
首先,大数据绝对不是忽悠,它是当下IT领域最时髦的词,简单说就是从各种数据中快速获取价值信息的能力。美国是最早发现和使用大数据科学价值的国家。2012年3月,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家战略,奥巴马政府甚至将大数据定义为“未来的新石油”。当时美国政府声明说通过提高美国从大型复杂的数据集中提取知识和管理的能力,来加强整个国家的竞争力,这被认为是跟互联网同一个级别的时代。显然,大数据不止是一个词汇,更是一门技术,是一个产业时代。
而中国作为世界上人口最多、GDP排名第二的国家,成立大数据国家队是非常及时的。大数据的精髓在于“大”,它不是抽样而是全样,它不是盲人摸到的象腿或者是象鼻子,而是整个大象本身,大数据的精妙处在于用的人越多越增持,通过这样一个模糊的宏观判断,能够完成一个精准的个体推荐,从而会让整个生产效率得到极大提高。
【不开放大数据,周边创业是无米之炊】
目前我国大数据应用还存在一些问题。
首先,大数据不是IT公司的专利。第一批国家统计局引入的战略合作伙伴,大多数还是聚焦在IT公司,其实不是只有IT公司才有大数据,如线下零售巨头企业在实体经济中积累了很大的数据资源,他们数据的深度和广度不亚于甚至超过互联网公司。第一批进入的合作伙伴之一上海钢联其实掌握了煤炭钢铁在内的大宗商品数据,这是国家统计局没有涉及到的。因此,非IT类公司、拥有巨大的业务形态的企业,都可以成为第二批国家统计局大数据合作伙伴。我们也看到,国家统计局作为国家法定职能部门把姿态放平,主动寻求和民营企业的合作,这是非常可喜的进步。
第二,拥有大数据的IT公司和非IT公司应该打破数据格局。我们看BAT(百度、阿里、腾讯),近期围绕微信和淘宝发生新一轮互相屏蔽,在早前百度和淘宝进行了屏蔽,这三家掌握搜索和社交和消费的数据,本来是三方的数据汇总才能拼凑出比较完整的网上信息图谱,但是三家公司为了彼此的商业利益,并没有体现出数据合作的意愿,而是互相封杀,这将给社会数据的流动带来伤害。因此,在保证一定商业利益的基础上,巨头的眼光应该放远一点,打破数据格局。这看起来是一个很难实现的乌托邦。不过任何美好的事情都需要乌托邦的愿景作为起步的。我们看到许多美好的事情,比如说全世界的互联网,全世界的人通过互联网联结在一起,开始大家觉得乌托邦,现在已经形成现实。
第三,应该呼吁政府相关部门进一步开放市场,因为围绕大数据不管是应用还是创业,最核心的是要有数据的源头,然后才能进行采集、编辑,重新编制。现在大量的关于国民经济或者说民生的数据其实还在封闭状态,在工商部门、银行、保险、公安、医院、社保,包括电信运营商机构的手里。如何让这些数据流动起来,能让大家更方便,其实应该由政府带头实现等级制数据的开放共享。在不违反保密或者是国防的情况下,如果不开放大数据,那么大数据研究和创业都是无米之炊。
所以还是应该抓住这个机遇,进一步开放市场,不断试点,一步一步把数据开放转起来,带来更多的应用价值。
【隐私保护与数据精准之间的平衡】
数据应该共融共通,还要开放市场。这个开放市场不仅仅是企业之间开放,企业对个人也要开放。
为什么现在开放变得这么谨慎?因为开放有风险,一是安全问题,二是伦理问题。安全问题是对于国防、军事以及整个经济信息的保密顾虑而言;伦理问题是从个体角度而言,即网民的隐私。大数据的作者曾经说过,在一个有组织的社会里,几乎每一则信息都在不同的时候,以不同的形式公开过。就公民而言,他的信息一次性在网上公开,和第一种情况有本质区别。
大数据平台在提供服务的同时,也在时刻收集用户的各种消费习惯、浏览习惯甚至生活习惯。如何保护用户的隐私成了大数据时代发展过程中不可回避的问题。因此,大数据的应用价值在于个人隐私保护与数据精准之间的平衡。
要真正做到大数据的开放,还需要很长的路走。我们相信,大数据会成为互联网之后,人类又一个技术乌托邦。大数据的启动跟互联网有着相同的逻辑,一开始大家谈,不知道怎么做,会有一轮甚至几轮比较明显的产业泡沫,但是随着那些看似乌托邦的愿景,一个技术、一个尝试的创业公司的进入,会一步一步变成现实。
未来大数据会怎样,创业者跟投资者都需要很谨慎。目前来说,就大数据做预测是非常危险的事情,比较谨慎的说,可能在三年左右会看到一些具体的、受到社会应用的大数据,往长期看则还是未知数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26