
差距分析_数据分析师_数据分析师培训
差距分析是指在战略实施的过程中,将客户实际业绩与战略期望的业绩进行对比分析,进行战略的评价与修订。
一、差距分析的内容
实际与期望的业务绩效相比通常会产生差距。差距分析主要是分析差距产生的原因并提出减小或消除差距的方法。这可以通过改变目标或者改变业务层的战略来实现。(数据分析师培训)最初提出的预测依赖于四个假设:
公司的业务组合保持不变。
在公司的产品和市场上取胜的竞争战略将继续一如既往地发展。
对公司市场的需求和盈利机会将沿着历史趋势发展。
公司自身对各个业务采取的战略将会沿着历史演变模式发展。
差距分析的第一步是考虑修改公司战略。如果期望业绩超过目标,可以将目标定得高一些。当目标大大超过可能取得的绩效时,也许必须将目标修改的低一些在做出这些调整之后,如果仍然存在显著差距,就需要提出新的战略来消除这种差距。由于为每一项业务引入了备选择增长战略,经理人员可能预测销售将增长,他们能够通过以下指标估计市场结构:
行业市场潜力(1MP)
相关行业销售额(RIS)
实际的市场份额(RMS)
下图是对行业市场潜力(IMP)的估计。首先,它假设所有可能合理使用产品的顾客都会这样做。其次,产品会被尽可能的经常使用,因此,IMP表示某一特定产品最可能的单位销售额。例如上海大众汽车销售公司预计市场潜力,根据预计的达到要求的人员或家庭单位都会购买汽车这一原则,可得出背景市场的潜力(IMP)而这一数据与实际存在差距,这差距主要表现在四种可能上,分别是产品线差距、分销差距、变化差距、竞争差距。
差距分析
这一销售额与目前销售额的差额表明了每种产品的增长机会。相关行业销售额(RIS)等于公司目前的销售额加上竞争差距,而实际市场份额(RMS)等于销售额除以相关行业销售额。造成公司潜在销售额与实际销售额差距的四个因素如下:
产品线差距。缩小这一差距需要从宽度或深度方面完善产品线,并引进新产品或改进产品。如产品线的生产能力不能够满足北京汽车市场的需求。
分销差距:可以通过扩展分销覆盖范围、提高分销密集程度和商品陈列缩小这一差距。
变化差距:客户使用这一战略的目的是鼓励没有使用过该产品的人试用,而鼓励现有的使用者消费更多的产品,较多购买者在考虑购买‘别克’公司的汽车
竞争差距:可以通过从现有竞争者手中夺取额外的市场份额,改善公司的地位,从而弥补这种差距。
如果预期的差距不能通过降低行业的市场潜力或得到额外的市场份额来弥补,就应将注意力转向评价公司的业务组合,目的是修改公司业务组合,增长成长率更高的业务,并剥离成长率低的业务。
二、差距分析实例:多元教学评价差距分析
传统的教学评价结果一般是单一的数量化结果,能为教学改进提供的信息有限。多元教学评价指标体系为各评价主体提供了一个统一的评价指标,对同一评价对象采用统一的评价指标,不同的价值判定依据可视为各层次上的标杆。教师和学生都可通过对方或专家的视角,找出自身的优势和不足。
本文取学生评价、同行专家评价和教师自我评价三种评价方式建立差距分析模型。评价指标为Xi,其中i=(1,2,….,k);对学生、专家和教师给出量化赋值分别记为XSi、XPi和XTi。
1.学生评价与教师自我评价差距为D1,则:
2.教师自 我评价与专家评价的差距记为D2,则:
3.学生评价与专家评价的差距记为D3,则:
本研究随机选取了某大学经济管理学院的3位教师,对其在3门课程(即高等数学、人力资源和战略管理)上的教学情况进行了调查,问卷设计参照多元教学质量评价指标体系。学生、教师和教学督导评价结果见表。
教师A在教学互动指标(鼓励讨论、鼓励提问、关注学生)上与学生评价和督导评价差距较大,表明教师A的教学方式距离学生期望和同行比较都有较大差距,因此教师A应该进一步反思总结,进行改进;
教师B在教学组织指标(讲解清楚、易于做笔记、完成教学目标)上的自我评价与学生评价和督导评价差距较大,进一步调查发现教师B是新进教师,还未完全适应课堂教学,因此应对其进行培训;
学生、专家对教师C的各项评分都较平均,且其总体分值最高,说明教师C的教学能力较高,但在教师的自我评价和督导评价中,学生学习主动性指标的得分都很低,应该进一步分析原因。
高校多元教学评价指标体系的内容涵盖了影响教学绩效的所有层面,弥补了当前教学评价只评“教”、不评“学”的不足,使教学评价不仅能促进教学的改进,而且有助于挖掘学生学习中存在的问题和困难。差距分析模型简单易行,物理意义明显,尤其适合寻找教师的改进点,对高校教学管理具有实际应用价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29