京公网安备 11010802034615号
经营许可证编号:京B2-20210330
差距分析_数据分析师_数据分析师培训
差距分析是指在战略实施的过程中,将客户实际业绩与战略期望的业绩进行对比分析,进行战略的评价与修订。
一、差距分析的内容
实际与期望的业务绩效相比通常会产生差距。差距分析主要是分析差距产生的原因并提出减小或消除差距的方法。这可以通过改变目标或者改变业务层的战略来实现。(数据分析师培训)最初提出的预测依赖于四个假设:
公司的业务组合保持不变。
在公司的产品和市场上取胜的竞争战略将继续一如既往地发展。
对公司市场的需求和盈利机会将沿着历史趋势发展。
公司自身对各个业务采取的战略将会沿着历史演变模式发展。
差距分析的第一步是考虑修改公司战略。如果期望业绩超过目标,可以将目标定得高一些。当目标大大超过可能取得的绩效时,也许必须将目标修改的低一些在做出这些调整之后,如果仍然存在显著差距,就需要提出新的战略来消除这种差距。由于为每一项业务引入了备选择增长战略,经理人员可能预测销售将增长,他们能够通过以下指标估计市场结构:
行业市场潜力(1MP)
相关行业销售额(RIS)
实际的市场份额(RMS)
下图是对行业市场潜力(IMP)的估计。首先,它假设所有可能合理使用产品的顾客都会这样做。其次,产品会被尽可能的经常使用,因此,IMP表示某一特定产品最可能的单位销售额。例如上海大众汽车销售公司预计市场潜力,根据预计的达到要求的人员或家庭单位都会购买汽车这一原则,可得出背景市场的潜力(IMP)而这一数据与实际存在差距,这差距主要表现在四种可能上,分别是产品线差距、分销差距、变化差距、竞争差距。
差距分析
这一销售额与目前销售额的差额表明了每种产品的增长机会。相关行业销售额(RIS)等于公司目前的销售额加上竞争差距,而实际市场份额(RMS)等于销售额除以相关行业销售额。造成公司潜在销售额与实际销售额差距的四个因素如下:
产品线差距。缩小这一差距需要从宽度或深度方面完善产品线,并引进新产品或改进产品。如产品线的生产能力不能够满足北京汽车市场的需求。
分销差距:可以通过扩展分销覆盖范围、提高分销密集程度和商品陈列缩小这一差距。
变化差距:客户使用这一战略的目的是鼓励没有使用过该产品的人试用,而鼓励现有的使用者消费更多的产品,较多购买者在考虑购买‘别克’公司的汽车
竞争差距:可以通过从现有竞争者手中夺取额外的市场份额,改善公司的地位,从而弥补这种差距。
如果预期的差距不能通过降低行业的市场潜力或得到额外的市场份额来弥补,就应将注意力转向评价公司的业务组合,目的是修改公司业务组合,增长成长率更高的业务,并剥离成长率低的业务。
二、差距分析实例:多元教学评价差距分析
传统的教学评价结果一般是单一的数量化结果,能为教学改进提供的信息有限。多元教学评价指标体系为各评价主体提供了一个统一的评价指标,对同一评价对象采用统一的评价指标,不同的价值判定依据可视为各层次上的标杆。教师和学生都可通过对方或专家的视角,找出自身的优势和不足。
本文取学生评价、同行专家评价和教师自我评价三种评价方式建立差距分析模型。评价指标为Xi,其中i=(1,2,….,k);对学生、专家和教师给出量化赋值分别记为XSi、XPi和XTi。
1.学生评价与教师自我评价差距为D1,则:
2.教师自 我评价与专家评价的差距记为D2,则:
3.学生评价与专家评价的差距记为D3,则:
本研究随机选取了某大学经济管理学院的3位教师,对其在3门课程(即高等数学、人力资源和战略管理)上的教学情况进行了调查,问卷设计参照多元教学质量评价指标体系。学生、教师和教学督导评价结果见表。
教师A在教学互动指标(鼓励讨论、鼓励提问、关注学生)上与学生评价和督导评价差距较大,表明教师A的教学方式距离学生期望和同行比较都有较大差距,因此教师A应该进一步反思总结,进行改进;
教师B在教学组织指标(讲解清楚、易于做笔记、完成教学目标)上的自我评价与学生评价和督导评价差距较大,进一步调查发现教师B是新进教师,还未完全适应课堂教学,因此应对其进行培训;
学生、专家对教师C的各项评分都较平均,且其总体分值最高,说明教师C的教学能力较高,但在教师的自我评价和督导评价中,学生学习主动性指标的得分都很低,应该进一步分析原因。
高校多元教学评价指标体系的内容涵盖了影响教学绩效的所有层面,弥补了当前教学评价只评“教”、不评“学”的不足,使教学评价不仅能促进教学的改进,而且有助于挖掘学生学习中存在的问题和困难。差距分析模型简单易行,物理意义明显,尤其适合寻找教师的改进点,对高校教学管理具有实际应用价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16