京公网安备 11010802034615号
经营许可证编号:京B2-20210330
差距分析_数据分析师_数据分析师培训
差距分析是指在战略实施的过程中,将客户实际业绩与战略期望的业绩进行对比分析,进行战略的评价与修订。
一、差距分析的内容
实际与期望的业务绩效相比通常会产生差距。差距分析主要是分析差距产生的原因并提出减小或消除差距的方法。这可以通过改变目标或者改变业务层的战略来实现。(数据分析师培训)最初提出的预测依赖于四个假设:
公司的业务组合保持不变。
在公司的产品和市场上取胜的竞争战略将继续一如既往地发展。
对公司市场的需求和盈利机会将沿着历史趋势发展。
公司自身对各个业务采取的战略将会沿着历史演变模式发展。
差距分析的第一步是考虑修改公司战略。如果期望业绩超过目标,可以将目标定得高一些。当目标大大超过可能取得的绩效时,也许必须将目标修改的低一些在做出这些调整之后,如果仍然存在显著差距,就需要提出新的战略来消除这种差距。由于为每一项业务引入了备选择增长战略,经理人员可能预测销售将增长,他们能够通过以下指标估计市场结构:
行业市场潜力(1MP)
相关行业销售额(RIS)
实际的市场份额(RMS)
下图是对行业市场潜力(IMP)的估计。首先,它假设所有可能合理使用产品的顾客都会这样做。其次,产品会被尽可能的经常使用,因此,IMP表示某一特定产品最可能的单位销售额。例如上海大众汽车销售公司预计市场潜力,根据预计的达到要求的人员或家庭单位都会购买汽车这一原则,可得出背景市场的潜力(IMP)而这一数据与实际存在差距,这差距主要表现在四种可能上,分别是产品线差距、分销差距、变化差距、竞争差距。
差距分析
这一销售额与目前销售额的差额表明了每种产品的增长机会。相关行业销售额(RIS)等于公司目前的销售额加上竞争差距,而实际市场份额(RMS)等于销售额除以相关行业销售额。造成公司潜在销售额与实际销售额差距的四个因素如下:
产品线差距。缩小这一差距需要从宽度或深度方面完善产品线,并引进新产品或改进产品。如产品线的生产能力不能够满足北京汽车市场的需求。
分销差距:可以通过扩展分销覆盖范围、提高分销密集程度和商品陈列缩小这一差距。
变化差距:客户使用这一战略的目的是鼓励没有使用过该产品的人试用,而鼓励现有的使用者消费更多的产品,较多购买者在考虑购买‘别克’公司的汽车
竞争差距:可以通过从现有竞争者手中夺取额外的市场份额,改善公司的地位,从而弥补这种差距。
如果预期的差距不能通过降低行业的市场潜力或得到额外的市场份额来弥补,就应将注意力转向评价公司的业务组合,目的是修改公司业务组合,增长成长率更高的业务,并剥离成长率低的业务。
二、差距分析实例:多元教学评价差距分析
传统的教学评价结果一般是单一的数量化结果,能为教学改进提供的信息有限。多元教学评价指标体系为各评价主体提供了一个统一的评价指标,对同一评价对象采用统一的评价指标,不同的价值判定依据可视为各层次上的标杆。教师和学生都可通过对方或专家的视角,找出自身的优势和不足。
本文取学生评价、同行专家评价和教师自我评价三种评价方式建立差距分析模型。评价指标为Xi,其中i=(1,2,….,k);对学生、专家和教师给出量化赋值分别记为XSi、XPi和XTi。
1.学生评价与教师自我评价差距为D1,则:
2.教师自 我评价与专家评价的差距记为D2,则:
3.学生评价与专家评价的差距记为D3,则:
本研究随机选取了某大学经济管理学院的3位教师,对其在3门课程(即高等数学、人力资源和战略管理)上的教学情况进行了调查,问卷设计参照多元教学质量评价指标体系。学生、教师和教学督导评价结果见表。
教师A在教学互动指标(鼓励讨论、鼓励提问、关注学生)上与学生评价和督导评价差距较大,表明教师A的教学方式距离学生期望和同行比较都有较大差距,因此教师A应该进一步反思总结,进行改进;
教师B在教学组织指标(讲解清楚、易于做笔记、完成教学目标)上的自我评价与学生评价和督导评价差距较大,进一步调查发现教师B是新进教师,还未完全适应课堂教学,因此应对其进行培训;
学生、专家对教师C的各项评分都较平均,且其总体分值最高,说明教师C的教学能力较高,但在教师的自我评价和督导评价中,学生学习主动性指标的得分都很低,应该进一步分析原因。
高校多元教学评价指标体系的内容涵盖了影响教学绩效的所有层面,弥补了当前教学评价只评“教”、不评“学”的不足,使教学评价不仅能促进教学的改进,而且有助于挖掘学生学习中存在的问题和困难。差距分析模型简单易行,物理意义明显,尤其适合寻找教师的改进点,对高校教学管理具有实际应用价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27