京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的发展应用_数据分析师培训
大数据分析的发展应用,不仅有助於加速智慧城市与智慧生活科技的实现,若应用於制造与服务产业的场域,不但能有效控制营运成本,还可以洞察市场趋势,提早掌握客户的需求,还有机会透过跨产业的大数据分析结果,发展智慧联网、智慧自动化、智慧生活、智慧城市等新兴科技服务业,进而重塑产业形貌,创造我国产业转型的崭新新契机。
如面对全球人口结构的转变,预防医学、健康照护、个体化医疗需求的增加,如医疗产业与穿戴科技若能结合彼此的专长,运用大数据分析技术将可加速新药、医疗器材开发,带来健康管理与诊治方式的改变。
我国在智慧终端装置,包括各式穿戴式装置、智慧联网装置的制造优势,可说是发展大数据分析的最有力後盾。
对於营运范围扩及全球的服务业而言,可望因此增加更多消费产值。
运用大数据分析,也可以加速提升物流及资讯流的流通便利性,尤其在极端气候变迁与复合性灾害日趋严重的大趋势下,城市治理需要面对的环境变化,将变得更为诡谲多变,对大数据分析技术的需求,自然也就应运而生。
大数据分析技术对产业的帮助,更是显而易见。根据麦肯锡全球研究所的资料显示,美国医疗照护产业藉由大数据分析技术,每年可以创造3,000亿美元的产值,同时提升0.7%的生产力(约21亿美元)。而美国零售产业,透过大数据分析技术,更使得整体产业毛利率提升至60%以上,每年生产力提升则达0.5~1%。
大数据分析对制造业的帮助更是明显,尤其是产品开发与组装成本可因此大幅降低,也让营运成本可因此降低7%。由於大数据分析技术也可应用於分析个人,对於营运范围扩及全球的服务业而言,可望因此增加更多消费产值,而服务供应商每年也因此至少有1,000亿美元以上的营收。
发展大数据分析产业的优势与机会
我国在智慧终端装置,包括各式穿戴式装置、智慧联网装置的制造优势,可说是发展大数据分析的最有力後盾,由於智慧终端所搜集而来的大数据,已是分析的主要来源,如何研发并制造出能够完成大数据分析应用的整合软硬体产品,正是台湾ICT产业走出代工竞争的产业转型契机。
值得注意的是,大数据分析的价值,相当程度依赖资料取得的完整性及正确性,网路言论环境开放且自由,搜集资料的便利性极高,不但有助於降低搜集资料的成本,也可让大数据分析的结果预测更为正确。
大数据分析产业的发展方向
经济部技术处指出,解构大数据产业生态体系,要从总体解决方案之「收集」、「储存」、「萃取」、「分析」、「应用」流程,所分别对应的「环境感知晶片与终端」、「大数据库软件或平台」、「数学演算法挖掘与压缩」、「分析模型专业分析」、「趋势预测终端」着手。
其中在「环境感知晶片与终端」部分,「泛用型晶片」及「终端整合制造能力」,都有相当程度的优势,至於「感测晶片」方面,因为需要整合特定应用领域(如生医、环境等),且须省电功能,相对於「泛用型晶片」,技术能力就还有改善空间。
至於「大数据库软件或平台」部分,以硬体为主的「伺服器」制造整合能力,就比属於软件的「大数据库」强大许多;同样的状况,也反映在「巨量储存」等应用面,也显示台湾大数据分析产业,急需在软件层次做出更多的努力。
「数学演算法挖掘与压缩」部分,不管是「资料采撷」(Data Mining)及「机器学习」(Machine Learning),我国在理论部分都不强,但因应特定应用需求调整演算法的能力尚可;「分析模型专业分析」部分,不管是由应用需求产出的分析模型能力,或是整合发掘与应用的洞察力,都有待强化,也显示ICT产业长期以来偏重在硬体制造领域的方向,在大数据分析时代,显然已不合时宜。
值得注意的是,「趋势预测终端」部分,只要是具新兴「应用」特性的领域,如社群媒体、行动应用、适地性服务、虚实整合(Online to Offline;O2O)等,分析能力都不差,也显示在创新产业的发展潜力。
善用既有基础发展
大数据的发展路径,必须从应用领域如制造、零售、批发、政府、教育、医疗等出发,逐步累积数据,研发与试验分析模型、预测方法,才能建立高价值解决方案。其中又以跨领域整合的能力最为重要,才能发展出各式各样的大数据应用成功案例,并与政府开放资料结合,做为领头示范。
大数据分析的人才培育工作,{CDA数据分析师培训}也有很大的发展空间,如建立资料分析与顾问专业认证、推动企业分析能力成熟度认证等;推动大专院校设置跨学科大数据分析学程,延揽国际人才回国任教或任职,都是可以努力的方向。
推动开放资料授权机制,鼓励企业将资料加值转化为资产,例如台湾经济新报将公司的公开说明书转为电子资料库等,设法建构利基领域资料库,推动资料资产化,也会有利推动法人机构或厂商针对垂直领域建立资料库,如华人网路行为资料库、华文数位影音资料库等,更有助於台湾市场成为全球业者与华人市场接轨的优先参考区域。
必须做出示范成果
但俗谚说的好;「尽信书,不如无书。」如果找错解决方案,用错误的方式解读大数据,得到的结果非但无助於决策参考,还可能造成严重的後果。大数据分析到底能提供什麽实质的帮助,到底是增加利润、降低成本,还是能够洞悉并发展出商业模式,都必须要尽快做出属於自己所拥有的大数据分析成果,才能让外界得以信服,有能力发展大数据分析技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16