
企业核心竞争力与大数据决策_数据分析师培训
在很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。中国很多企业,决策集中在一些少数人手中,更多的一些私人企业老板,相信自己直觉和经验。在过去直觉和经验决策,让很多企业获得成功,随着商业环境的变化,我们发现决策风险比过去大很多。直觉和经验已越来越抵抗不了环境变化带来的风险,而这些环境变化相较过去更加复杂,速度更快。
企业核心竞争力
很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。常见的直接的定义方法,用这样一个公式表示:企业核心竞争力=决策力×支持力×执行力。在“张氏”核竞争力研究中,把核心分解10个组成部分,那么第一个也是最重要的一个便是企业决策力。这种竞争力,是企业辨别发展陷阱和市场机会,对环境变化作出及时有效反应的能力。不具有这一竞争力,核心竞争力也就成了一具腐尸。决策竞争力与企业决策力是一种同一关系。决策频频失误的企业,肯定没有决策竞争力。没有决策竞争力的企业,也就是企业决策力薄弱。
决策力中的经验和大数据
经验和数据是决策的两大方式,有的人执着于以往的经验,有的人相信数据,而有的人把数据和经验结合形成更为科学的决策模式。
调查显示,更多的大陆或香港企业愿意采用数据支持,进行决策。决策模式决定决策能力,而现实中,实现数据决策并不容易。
大数据与农夫山泉终端决策
产品摆放位置一直是销售终端研究主要课题,过去人们找到更为合理摆放位置,需要人工蹬守观察。
看一个农夫山泉的例子。来自农夫山泉的业务员每天例行公事地来到这个点,拍摄10张照片:水怎么摆放、位置有什么变化、高度如何……这样的点每个业务员一天要跑15个,按照规定,下班之前150张照片就被传回了杭州总部。每个业务员,每天会产生的数据量在10M,这似乎并不是个大数字。但农夫山泉全国有10000个业务员,这样每天的数据就是100G,每月为3TB。
如果想知道:怎样摆放水堆更能促进销售?什么年龄的消费者在水堆前停留更久,他们一次购买的量多大?气温的变化让购买行为发生了哪些改变?竞争对手的新包装对销售产生了怎样的影响?不少问题目前也可以回答,但它们更多是基于经验,而不是基于数据。因为他们抱着一个金山,但没有开发,人工无法对影像进行分析,找到想要的结论。如果超市、金融公司与农夫山泉有某种渠道来分享信息,如果类似图像、视频和音频资料可以系统分析方法,所有以上通过大数据分析系统都会找到答案。
大数据应用与阿迪达斯战略转型
2008年之后,库存问题确实很严重,中国服装行业经历寒冬,不少企业出现库存危机。阿迪达斯也不例外,很多企业把降价、打折等手段作为清库存手段,然而这些手段只能制标不能制本。企业库存高企根本原因,是企业的管理模式出现问题。
阿迪达斯产品线丰富,过去,面对展厅里各式各样的产品,经销商很容易按个人偏好下订单。现在,阿迪达斯会用数据说话,帮助经销商选择最适合的产品。首先,从宏观上看,一、二线城市的消费者对品牌和时尚更为敏感,可以重点投放采用前沿科技的产品、运动经典系列的服装以及设计师合作产品系列。在低线城市,消费者更关注产品的价值与功能,诸如纯棉制品这样高性价比的产品,在这些市场会更受欢迎。其次,阿迪达斯会参照经销商的终端数据,给予更具体的产品订购建议。比如,阿迪达斯可能会告诉某低线市场的经销商,在其辖区,普通跑步鞋比添加了减震设备的跑鞋更好卖;至于颜色,比起红色,当地消费者更偏爱蓝色。
挖掘大数据,让阿迪达斯有了许多有趣的发现。同在中国南部,那里部分城市受香港风尚影响非常大;而另一些地方,消费者更愿意追随韩国潮流。同为一线城市,北京和上海消费趋势不同,气候是主要的原因。还有,高线城市消费者的消费品位和习惯更为成熟,当地消费者需要不同的服装以应对不同场合的需要,上班、吃饭、喝咖啡、去夜店,需要不同风格的多套衣服,但在低线城市,一位女性往往只要有应对上班、休闲、宴请的三种不同风格的服饰就可以。两相对比,高线城市,显然为阿迪达斯提供了更多细分市场的选择。
实际上,对大数据的运用,也顺应了阿迪达斯大中华区战略转型的需要。库存危机后,阿迪达斯从“批发型”公司转为“零售驱动型”公司,它从过去只关注把产品卖给经销商,变成了将产品卖到终端消费者手中的有力推动者。而数据收集分析,恰恰能让其更好地帮助经销商提高售罄率。
大数据应用决策例子还有很多,如何科学决策,提高决策能力,进而提高企业核心竞争力,是很多企业必须面临的问题。大数据时代到来,让过去不可能进行数据决策的,成为可能,在未来大数据在企业战略管理中也将占居越来越重要的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23