
企业核心竞争力与大数据决策_数据分析师培训
在很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。中国很多企业,决策集中在一些少数人手中,更多的一些私人企业老板,相信自己直觉和经验。在过去直觉和经验决策,让很多企业获得成功,随着商业环境的变化,我们发现决策风险比过去大很多。直觉和经验已越来越抵抗不了环境变化带来的风险,而这些环境变化相较过去更加复杂,速度更快。
企业核心竞争力
很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。常见的直接的定义方法,用这样一个公式表示:企业核心竞争力=决策力×支持力×执行力。在“张氏”核竞争力研究中,把核心分解10个组成部分,那么第一个也是最重要的一个便是企业决策力。这种竞争力,是企业辨别发展陷阱和市场机会,对环境变化作出及时有效反应的能力。不具有这一竞争力,核心竞争力也就成了一具腐尸。决策竞争力与企业决策力是一种同一关系。决策频频失误的企业,肯定没有决策竞争力。没有决策竞争力的企业,也就是企业决策力薄弱。
决策力中的经验和大数据
经验和数据是决策的两大方式,有的人执着于以往的经验,有的人相信数据,而有的人把数据和经验结合形成更为科学的决策模式。
调查显示,更多的大陆或香港企业愿意采用数据支持,进行决策。决策模式决定决策能力,而现实中,实现数据决策并不容易。
大数据与农夫山泉终端决策
产品摆放位置一直是销售终端研究主要课题,过去人们找到更为合理摆放位置,需要人工蹬守观察。
看一个农夫山泉的例子。来自农夫山泉的业务员每天例行公事地来到这个点,拍摄10张照片:水怎么摆放、位置有什么变化、高度如何……这样的点每个业务员一天要跑15个,按照规定,下班之前150张照片就被传回了杭州总部。每个业务员,每天会产生的数据量在10M,这似乎并不是个大数字。但农夫山泉全国有10000个业务员,这样每天的数据就是100G,每月为3TB。
如果想知道:怎样摆放水堆更能促进销售?什么年龄的消费者在水堆前停留更久,他们一次购买的量多大?气温的变化让购买行为发生了哪些改变?竞争对手的新包装对销售产生了怎样的影响?不少问题目前也可以回答,但它们更多是基于经验,而不是基于数据。因为他们抱着一个金山,但没有开发,人工无法对影像进行分析,找到想要的结论。如果超市、金融公司与农夫山泉有某种渠道来分享信息,如果类似图像、视频和音频资料可以系统分析方法,所有以上通过大数据分析系统都会找到答案。
大数据应用与阿迪达斯战略转型
2008年之后,库存问题确实很严重,中国服装行业经历寒冬,不少企业出现库存危机。阿迪达斯也不例外,很多企业把降价、打折等手段作为清库存手段,然而这些手段只能制标不能制本。企业库存高企根本原因,是企业的管理模式出现问题。
阿迪达斯产品线丰富,过去,面对展厅里各式各样的产品,经销商很容易按个人偏好下订单。现在,阿迪达斯会用数据说话,帮助经销商选择最适合的产品。首先,从宏观上看,一、二线城市的消费者对品牌和时尚更为敏感,可以重点投放采用前沿科技的产品、运动经典系列的服装以及设计师合作产品系列。在低线城市,消费者更关注产品的价值与功能,诸如纯棉制品这样高性价比的产品,在这些市场会更受欢迎。其次,阿迪达斯会参照经销商的终端数据,给予更具体的产品订购建议。比如,阿迪达斯可能会告诉某低线市场的经销商,在其辖区,普通跑步鞋比添加了减震设备的跑鞋更好卖;至于颜色,比起红色,当地消费者更偏爱蓝色。
挖掘大数据,让阿迪达斯有了许多有趣的发现。同在中国南部,那里部分城市受香港风尚影响非常大;而另一些地方,消费者更愿意追随韩国潮流。同为一线城市,北京和上海消费趋势不同,气候是主要的原因。还有,高线城市消费者的消费品位和习惯更为成熟,当地消费者需要不同的服装以应对不同场合的需要,上班、吃饭、喝咖啡、去夜店,需要不同风格的多套衣服,但在低线城市,一位女性往往只要有应对上班、休闲、宴请的三种不同风格的服饰就可以。两相对比,高线城市,显然为阿迪达斯提供了更多细分市场的选择。
实际上,对大数据的运用,也顺应了阿迪达斯大中华区战略转型的需要。库存危机后,阿迪达斯从“批发型”公司转为“零售驱动型”公司,它从过去只关注把产品卖给经销商,变成了将产品卖到终端消费者手中的有力推动者。而数据收集分析,恰恰能让其更好地帮助经销商提高售罄率。
大数据应用决策例子还有很多,如何科学决策,提高决策能力,进而提高企业核心竞争力,是很多企业必须面临的问题。大数据时代到来,让过去不可能进行数据决策的,成为可能,在未来大数据在企业战略管理中也将占居越来越重要的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23