京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大科学开启大数据、大发现新时代_数据分析师
大科学工程,是以工程方式、计划手段、汇聚科技资源与力量整体推进重大科技计划的最新范式,是科学研究由传统的“手工小作坊”向现代大规模“工场”演进的一次革命。大科学范式的“兵团作战”,将以空域和领域维度上的大规模,甚至超越时域维度上的长尺度,实现今朝一日、史上数年的突破。
大科学是大数据的摇篮,大数据是大科学的产物
大科学的王者之道始于大数据的产生。人类历史上的大数据,源于科技领域,确切地说源于大科学研究。曼哈顿计划打开了微观世界,并开创了借用人造的大科学设施洞开微观世界的崭新科学方法论,以此为依托启动了一系列大科学计划,它们产生了史无前例的超大规模数据。如位于瑞士的欧洲核子研究中心、由全球逾8000位物理学家合作兴建的大型强子对撞机,2008年试运行后,数据量即达25PB/年,2020年建成后将达200PB/年,因此他们率先创建了“大数据”的概念。无独有偶,旨在测定人类基因组30亿碱基遗传密码的基因组计划,进行个体基因组测定时数据量即已高达13PB/年。而此计划后,学界受其鼓舞开展了一系列遗传背景迥异、不同疾病群体以及大量其他物种的基因组测序,数据量迅速逼近ZB级(是PB的百万倍),不约而同地创造了“大数据”概念。今天人们常用的互联网最初就是这些领域的科学家为解决海量数据传输而发明的。
人类理性对物质世界、人类社会和精神世界的认识,其最高境界是智慧。而要达此境界必然经过数据、信息、知识三个层阶,其中,数据是信息之母、知识之初、智慧之源。随着信息技术持续数十年的迅猛发展以及人类社会各行各业信息化的强力辐射,在人类纪元新千年的钟声敲响不久,文明世界就掀起了史无前例的大数据狂潮,其奔涌之疾,升腾之烈,不似海啸,胜似海啸。人们欢呼,因为它是摧枯拉朽、一往无前的狂飙,将以势不可挡的革命性力量,开辟新的天地;人们恐惧,因为它是行不由缰、漫无方向的野马,有着难以预想的破坏性力量。此时此刻,人类需要冷静,人类必须理性。
人类文明迄今经历了三次浪潮:第一次是农业革命,数千年前出现并持续数千年,释放出“物之力”;第二次是工业革命,数百年前出现并已持续数百年,释放出“能之力”;第三次是智业革命,数十年前开始孕育,目前正处初级阶段,将不断释放“智之力”。1980年,托夫勒预言了这次新起的文明,并明确指出这次文明将以信息化为标志。其后,恰如其料,技术与文明的信息化有如神助,在人类社会各领域、全球各地域甚至更广阔的空域天域似地火一般的点燃、普及。信息社会、信息文明似乎转眼间唾手即得,更有大数据时代的“即时”到来好像为此作了一目了然的注解。冷静分析,实则不然。数据是信息之母,没有数据,何来信息?缺乏数据的时代,怎能是名副其实的信息时代?而刚刚才来的大数据时代,恰恰表明此前是数据欠缺的“时代”。此前,人类发现、开辟的大量全新的数据空间,构建的超大型数据生产“工厂”、超大型数据仓库,建设的“信息高速公路”及其四通八达的网络,为大数据的涌现及其广泛辐射确实提供了充分的先决条件,但它们仅是大数据的摇篮,而不是摇篮里的婴儿。
从大数据向大信息升华,亟待统计科学与数据科学的革新
数据是信息之母,但再好的数据也不会自动生成信息。大数据得来不易,但转化为大信息更难,而不能转化为大信息的大数据就是横亘于人类认知之旅的理性黑洞、知性沙漠。实际上,人类理性跨过蒙昧之初,就拥有了将数据转换为信息的能力,这也是智人与直立人的分水岭。
然而,面对时下大数据时代奔涌的多元、多源、异构的海量数据,无论是被美誉为“孕育了现代科学”的统计科学,还是应大科学之运而生、当今正如日中天的数据科学,都还只能是望洋兴叹。今日之大数据,明日之大信息,扭转乾坤者,还属革新后的统计科学与数据科学。
信息虽然衍进自数据、珍贵于数据,但也只是其通向知识的中继站。知识,是人类理性认识世界的结晶,是改造世界的基石。培根在《伟大的复兴》中豪迈地预言:知识就是力量。大约400年后,人类终于迎来“知识经济时代”。知识经济,作为人类社会经济增长方式与经济发展的全新模式,被称为经济领域的哥白尼革命,其基本特征是:知识运营为经济增长方式、知识产业成为龙头产业、知识经济成为新的最活跃的经济形态。
由此可见,知识不仅是力量,而且是时代最核心、最强劲的先锋力量。但我们同时必须清醒地认识到:大数据与大知识,尚隔两重天,如将大数据比作洪水、比作奔流,它只有首先蒸发为大信息的气流,继而升腾为大知识的彩虹,才能气贯长虹、一飞冲天而成为引领知识经济时代的“巨龙”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05