
专家谈零售大数据:以前没想到能做的现在可以做了
国内第一代大数据创业家柏林森先生是国内大数据技术和实践的先驱,先后创立百分点科技、信柏科技两家大数据公司,是中关村高端领军人才、海淀区创业领军人才、中关村十大海归新星。现在柏林森先生正领导“信柏科技”致力于“用消费大数据来帮助线下零售业O2O转型“的事业,零售行业内大数据标杆性项目——朝阳大悦城大数据体系系统就是由柏林森先生领导的大数据团队助力而完美落地的。
在最近的亚太零售创新峰会2014上,柏林森先生发表了关于“零售大数据”的独特又深刻的演讲,指出做零售大数据的重点以及驱动零售业创新发展的几类大数据应用,让人耳目一新,醍醐灌顶。
大数据概念大家讲了很多年了,有时候讲得挺复杂的,我们对大数据的认识比大家通常讲的要简单直接很多。大数据第一件事肯定要产生业务价值,不产生业务价值的大数据应用是没有任何意义。
在零售领域里面,我们认为大数据做的事就是用数据驱动运营每个环节。
首先我们需要确定数据源 ,针对线下零售来讲,数据源有三类:第一类是整个零售系统不管是ERP,还是供应链等,这些数据要整合在一个平台;第二类数据源就是消费者的行为数据;第三个是我们对于外部第三方的数据整合起来,这构成我们的数据源。
在数据源的基础上我们进行分析、挖掘,无非这个数据的作用一个是在经营分析管理环节,另外一个是对顾客营销环节发挥作用,简单来说零售大数据做的就是这样的事情。
信柏从今年开始专注做线下零售大数据和O2O这一块,做了朝阳大悦城、万达集团、兴隆大家庭、毅德集团、时光海、索尼等多个项目,在不断的项目实践中加深了零售行业大数据应用的理解。第一个,数据要和行业做结合,脱离行业纵深的数据应用很难发挥价值。从零售角度来讲,像百货、或者购物中心,他们对数据的需求有相当大的差别,所以零售大数据的应用一定是纵深的应用。第二个,数据的维度和质量是特别重要的。数据维度好比原料,有了好的原料,好的厨师所需要做的就是消费者需要什么,把这些好的原料简单加工就可以提供非常好的服务。
零售大数据的特点是以消费者为中心的数据,打通消费者在线上线下的各个ID,关注消费者在线上线下各个品类的消费偏好这些数据。比如他在线上母婴、化妆品方面喜欢的品牌是什么,他的需求是什么,他最近有什么购买特点,包括线下他去过周边哪些店,这些是我们所关注的。以人为中心,现在信柏覆盖了5亿消费者,其中包含线上线下整体打通的数据覆盖了2亿多的消费者。
说到线下零售的行为数据是怎么采集的?最关键的就是现在智能手机以及智能硬件的普及。通过智能手机以及其他智能硬件技术手段的辅助,如Wifi接触点、交互的大屏、智能POS等这些用户处理,信柏可以知道消费者在一个店什么区域逛过、停留多长时间、买了什么东西,这些构成线下消费者的数据基础。
从线下零售数据,我们关注的是线下零售实体业务结构,消费者在线下消费的数据,这构成线下零售全数据的数据基础,在此之上信柏通过分析挖掘做具体的数据应用。信柏的零售大数据应用方面无非是三类: 第一类是零售在做,但做不好的事;第二类零售一直想做,但做不了的事;第三类零售之前都没有想过这件事是可以这么做的事。
第一类:零售在做,但做不好的事
例子1:选址和招商。之前零售如果要做选址,以购物中心为例,他会请营销策划公司分配人员站在路口分析这个购物中心所在地点的消费行为分析,花一两个月时间收集300到500份问卷,根据问卷营销策划公司给出周边的消费者是什么情况。但由于以下两个因素,这种传统的做法误差较大:一是样本量不多,调研深度也不够;二是接受问卷的消费者当时主观上是乐意还是牵强。
同样是选址和招商这件事,从信柏消费大数据的角度来看很简单,因为信柏知道周边所有消费者的数据,可以定位到商圈和小区,所以信柏5亿的消费者大数据库可以轻松知道选定的这个地点周边消费者的样本,包括这些消费者在线下其他地方的消费偏好、他们的收入水平、家庭构成以及在线上的浏览和消费偏好,几分钟可以出这样的报告。
如果连锁店选址准备开100家店,那么潜在的选址可能要有1000个,如果对1000个做筛选可能基本上一个团队全年工作,但如果有了大数据,这件事情只需几个人就可以完成。借助信柏消费大数据覆盖的数据,零售商任意给一个地点,信柏就能知道周边人口的构成、家庭的构成、消费购物的构成。招商也是一样的,招商什么品牌完全根据周边消费者的偏好定。选址这件事就销售商之前在做的,在没有大数据的帮助是非常繁重的事,基本上靠一点信息拍脑袋形式构成的。
例子2:营销活动策划。购物中心、百货、品牌等线下实体零售都会经常策划营销活动,显然很多促销活动其实是针对特定人群而做的。例如,六一儿童节、三八妇女节做促销活动。零售商一般都是拿着会员资料来猜女性有多少、带家庭的人口有多少、可能是怎样的来策划活动。
但有了信柏消费大数据的帮助,信柏可以给全局消费者、会员人群做非常清楚的消费者画像,告诉零售商这群消费者特点是什么、这个促销活动针对的消费者有多少,哪些是目标消费者、目标消费者的长期偏好和短期需求是怎样的?
第二类:零售一直想做,但做不了的事
线上零售希望有线下实体的接触点,当零售商做线上线下整合的基础就是希望知道其客户群不仅是在本品牌的需求,还想知道消费者在其他品牌上的需求,但这种需求零售商自身是做不了的。对于信柏这个消费大数据公司,因为多年以来积累大量到亿级个消费者的消费行为数据,加上专业的大数据挖掘和分析能,就可以得到一个消费者或者一群消费者在各个消费环节上的需求数据。
第三类:零售之前都没有想过这件事是可以这么做的事
之前零售商可能没有想到可以做的是,但是现在有了数据就可以做了。很多品牌会有户外广告的需求,比如说楼宇的广告、公共设施上的广告,过去零售商说在什么地方投什么广告皆有广告策划的人来决定,现在还有专业的大数据分析方案来辅助零售商精准投放。
假设三星出了一款新手机想在上海投广告,他想专门针对苹果手机的用户投放和展示这个广告,以前这件事是大家想都没想过能这样做的事,现在从信柏的消费者大数据出发就可以画上海整个苹果用户的分布,可以告诉三星的人苹果用户都在哪些区域聚集,三星就可以非常清楚的知道一个广告应该投放在哪些场所.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19