
云端大数据分析的五要素_数据分析师培训
目前,创新型企业正在研究他们的数据管理策略,以确定在哪些环境下以及怎样发挥云计算解决方案的作用。依托广泛的云计算产品、服务及技术,企业将能够通过新的数据管理模式,打破传统数据管理模式的藩篱,创造新的价值。
基于云的分析就是一个典型的例子。企业管理协会(EMA)研究显示,越来越多的企业采用混合数据管理模式,利用专用平台管理并调整数据、应用程序及工作负载,以提升数据管理性能,并削减成本。EMA近期问卷调查报告称,60%的受访企业正在使用2-3种平台运行复杂工作负载。在这种混合管理模式下,云端环境通常发挥着至关重要的作用。
衡量成功的准则
不同厂商针对各种不同行业提供卓越的分析方案,要调查它们的数据分析能力,需要从以下五大要素入手:
1. 分析性能
首先,为分析用例提供支持需确定信息是否能轻松、快速地从源系统迁移至云端环境。缓慢、复杂的数据采集过程将影响决策速度,而费时费力的数据准备及障碍重重的多级数据载入过程将导致数据管理效率低下,日常运营成本增加。企业还应重视信息存储容量,因为它直接决定业务问题记录的数量。
云端平台不但需实现单用户业务咨询,还需支持多用户进行系统并时查询。无论有多少用户查询系统,云端平台都必须处理信息,并将结果及时返回。等待处理的时间过长导致无法及时获得洞察力,将使查询结果采纳率受到限制,降低投资回报率,甚至无法收到回报。
2. 工作负载的灵活性
与报告编制、重复联机分析处理、特定分析和数据挖掘或高级分析等常见功能相比,支持多个工作负载才是平台灵活性和敏捷性的体现。
平台面向数据库开发,将能够提升其性能和灵活性,以不同的方式支持工作负载。实施基于行的传统策略,能够向记录轻松添加插入及更新内容,但查询需要扫描整个表格时,不利于处理列式布局的表格。部分平台同时搭载基于行和列的技术,可满足分析工作负载的需求。
通过部署Apache Hadoop基础设施及探索分析功能,开发更深层次数据探索能力的大数据战略对计划通过云计算服务优化现有平台功能的企业而言非常重要。
3. 先进的技术
分析项目通常会超出其最初设定的范围。随着更多用户开始使用平台,系统需要满足更多需求,大多数平台容纳的数据量在项目启动一段时间后都超过最初设定的范围。因此,项目初期虽然不急于制定长期计划并提出项目需求,但这些规划和要求却非常重要。
随着数据驱动型项目不断成熟,就需要更多高级功能和特性。而传统系统功能无法满足用户对洞察力的要求时,这种需要尤为明显。扩展云端环境,并加入探索分析等新功能的能力迫切需要具有相应能力的平台。例如,为数据仓库部署Hadoop解决方案将有机会获取高级洞察,而选择使用新功能,将确保项目顺利进展,并创造出意想不到的价值。
4. 专业支持
数据库基础设施开通服务是实施分析解决方案的重要环节,但却不是唯一的环节。为支持业务咨询服务,数据必须使用适当的格式。这将有助于平台为用户高效提供准确的相关信息。
设计并搭建数据库架构可能需要数据建模、数据整合及安全性等方面的高级数据库综合管理技能与经验。部署云端环境的企业经常遇到IT技术难题,新项目开展时始终无法获得相应支持,影响项目实施进度。因此,企业应与解决方案提供商开展合作,通过他们的专业咨询、培训和实施服务,确保项目顺利开展。
5. 企业生态系统
如果企业仅使用一套解决方案,通过它获得的业务洞察只能创造有限的价值。而在更广泛的生态系统中使用分析平台,将能够提升云端平台的效率。
企业充分利用大数据分析或探索平台功能,将能够运行高级工作负载,并管理更复杂的项目。大多数解决方案提供商提供合作伙伴网络服务,以扩展平台的能力和功能,为项目创造更多价值。
挑选符合要求的平台
随着工作负载及高级应用程序的不断出现,在选择平台时就应更加重视实际使用情况。各行业致力于推动技术创新的企业都在考察云端分析功能。考虑到厂商提供技术的多样性,选择解决方案时,必须仔细研究评估所有相关标准,确保解决方案能充分发挥性能并带来预期的价值。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08