
数据分析师前景
据统计数据表明,在今后的五年内,我国将需要 10万名持有 数据分析师 证书的分析专业人才。政府经济部门、金融机构、投资公司以及企业对数据分析师的需求正在与日俱增。注册数据分析师职业的年薪会迅速提升到20万以上,但是要有足够的经验和经历。
数据分析在我国属于朝阳行业
数据分析在国外广泛应用于各个领域,但在中国仍属于朝阳行业,至今刚刚走过了10个年头。“中国数据分析行业的发展大致可以分成四个阶段”, 第一阶段可称为觉醒与前瞻。90年代,大量海外机构将西方投资决策技术引进中国,并受到中国企 业和金融投资机构的广泛学习借鉴。数据分析行业到了21世纪进入到第二个阶段,迎来了数据分析师的诞生。从2004年到2010年,我国项目数据分析师人数从零起步,猛增至近万人。到了第三阶段,我国首家数据分析事务所创立。在第四个阶段中,首届中国数据分析业 峰会在京成功的举行都标志着中国数据分析行业已经进入快速发展的成长期。行业发展刚刚走过了10个年头,分析师人数从零猛增至近万人。
项目数据分析行业在欧美发展得十分成熟,数据分析这一帮助企业决策的方式已经深入到各行各业。而在中国,数据分析刚刚走过了7个年头,巨大的市场潜力和人才缺口使得数据分析行业进入了发展的黄金时期,而数据分析师则成为了一个朝阳职业。数据分析如何切实地帮助企业决策?数据分析师这一新兴职业的 工作性质是什么?整个行业的未来发展前景如何?近日笔者带着这些问题采访了相关人士。
数据分析魅力
数据分析行业的魅力和挑战在于永远有未知的项目等待着项目数据分析师,每个项目都有属于自己的行业、不同的客户需求。因此要不断地学习、充电,缺少的知识和能力短板都要迅速补上,包括统计知识、市场调研技巧、数据处理、各种数 据模型的应用等等。
国内企业的认知需要改变
对于数据分析行业的未来发展趋势,邹东生表示:“目前许多企业在决策时仍沿用以往的个人经验,没有用数据说话,这在实际决策运行时会出现很多问题。”任彦博说:“在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定 的。用数据说话,重视定量分析,也逐渐成为科学研究、企业经营、政府决策等过程着重考虑的问题。目前随着各行各业的不断发展,数据分析行业涉及的领域正由 最初的投融资项目分析转向为企业经营、管理方面服务。照此发展,相信不远的将来,中国的数据分析行业一定也会发展到行业精细化的程度。到那时,这个职业的 价值才会真正地体现出来。”
CDA 全称“注册数据分析师”,由“CDA注册数据分析师协会(Certified Data Analyst Institute)”在顺应大数据、云计算的潮流下发起成立的职业简称。旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师项目包括教育,咨询,考试,认证,机构招聘合作。CDA数据分析师分为三个等级,CDA协会每年举办两次等级考试,通过考试者可以获得CDA协会颁发的数据分析师等级证书,此证书代表数据分析师人才技能水平,为企业事业单位选拔和聘用专业人才的参考依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15