
大数据不是“最正确”,而是“最可能”
这两年大数据的发展速度令人惊讶,深究起来似乎要感谢商家们不遗余力地“宣传”,让大数据终于落入凡间,然而,聚光灯之外的大数据又是怎样的呢?
你真的懂得大数据吗?
仔细想想,你真的懂得大数据吗?笔者发现很多人其实都是道听途说,一知半解。最近 RADICA DATA LAB 早前进行“大数据市场应用调查”,表示教育水平更高者更熟悉大数据。
大数据其实并不是甚么新奇奥秘的玩意,说穿了它就只是 Found Data ,将零散杂乱的各种数据统合分析,从而演算出某些结论、推测以及反应。昔日的数据库是被动的,它要求使用者逐一回馈,像是填写各项问卷、收集技术样本等等。
“最可能的答案”而非“最正确的答案”
不论是收集过程、数量以及分析数据都需要花费大量时间,而且往往是针对一些特定主题及目的,数据亦不够全面。然而由于现在电脑及手机的普及,以及网络通讯的流行,实现新的数据收集方式:将大量“数位化资讯”进行演算分析从而“数据化”。即使是普通人也会听闻及发现,为什么手机会知道自己的喜好,搜索时都是将自己常去的网站排名靠前,显示的广告都是自己有兴趣的,这就是大众所感知到的“大数据”如何影响自己。
大数据有别过去收集数据的方式,它不需要刻版而特定的数据,纵使再零碎不全,都一律交由电脑收集及识别。大众日常于网络上做的每一步活动,都有纪录下来,让有关方面可以依据需要分析用户个人喜好、居住地区、考虑条件、特定浏览时间等等提供“最可能的答案”,而非“最正确的答案”。
大数据重视关联
大数据是违反科学的:科学讲求精确,它却讲求模糊。科学讲求因果,它只重视关联。科学只纪录有用的数据,它却是所有数据都有价值。早于 20 世纪 20 年代 B.Russell 就提出过有关的论文,之后 1965 年 L.A.zadeh 发表模糊集合理论,正式奠定基础。模糊理论实际上是模糊集合、模糊关系、模糊逻辑、模糊控制、模糊量测等理论的泛称。
过去人类尤其是西方科学重精确轻模糊,胡适亦曾撰文《差不多先生传》,[大数据魔方]崇尚西方学风的他们抨击讽刺中国人特有的“近似推理( Approximation reasoning )”:缺乏科学精神,凡事模棱两可,只要差不多就好。讽刺的是不出数十年,西方科技发展就要学习差不多先生,追求不明确与模糊概念。事实上,模糊理论应用最有效最广泛的领域就是模糊控制。模糊控制出人意料的解决了传统西方理论逻辑无法解决或难以解决的疑难,并取得了一些惊人的成效:大数据就是其中的佼佼者。
大数据未必百分百正确,但又合乎一般人理解的范围
例如“青年”这个概念,它的内涵大家都清楚明白,但是什么样的年龄阶段内的人是青年,恐怕大家莫衷一是,因为在“青年”这个概念中没有一个清晰确定的边界与外延,这就是模糊概念。人们在认识模糊性时往往带有主观性,每个人对模糊事物的认知不可能完全相同。我们询问一千人他们认知中“年青”的年龄范围,那么我们可能得到一千个不同的答案。尽管如此,当我们用模糊统计的方法对海量数据进行分析时,答案又具有一定的规律性。
大数据就是以相近的原理运作,假设我们要求电脑在甲城市报告“低收入青年的数量”,这里所说的“低收入”、“青年”都是模糊概念,过去的统计学要先求出“何谓低收入”“何谓青年”的“精确范围”然后才能进行下一步的统计:你要先告诉电脑某个薪金以下是低收入,哪个年龄阶层是青年,然后在资料库指定栏位找符合的条目。然而在大数据时代下,电脑能通过模糊概念去分析判断,演算法会自己跑自己分析“低收入”及“青年”大概的范围,将相关的数据条列出来。它未必百分百正确,但又合乎一般人理解的范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24