
大数据时代轻易获取知识的利弊_大数据培训
长期以来,人们学习和掌握知识,要么是老师的言传身授,要么是阅读书籍报刊,尤其是来自经典书籍上的知识,很多人对此深信不疑。然而进入网络大数据时代之后,海量的知识顿时如潮水涌现在眼前,令人眼花缭乱。到底如何判断哪些是真知识,并且是有用的知识,现在成了一个难题。美国哈佛大学伯克曼互联网与社会中心的资深研究员戴维·温伯格新著《知识的边界》(中文版译者胡泳、高美,山西人民出版社出版),围绕大数据时代的知识等一系列问题展开了深层次的探讨和反思。
书籍报刊中的知识凝聚着专业人士的智慧,更具价值
本书中,温伯格对于大数据时代的知识进行了不同层面、不同维度的分析和梳理。他认为,印刷时代的知识是静态、单向度、线性的传播方式,而大数据时代的知识则恰恰相反。美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识是非线性的,可以自由组合、切割,处于一种游离状态。有点“召之即来,来之可取”的意味。大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。在没有建立互联网数据库之前,学者们从事学术研究,必须到图书馆查阅一本本书刊资料,既费时又费力。现如今,有了一台连接网络学术数据库的电脑,只要输入关键词,无数近似文献就会“排队”以供遴选。对于作家而言,大数据时代的文学创作,再也不必手持放大镜,一页页地翻阅字号奇小无比的工具书,而在词海的数据库中轻松检索,轻而易举就能获取相近或相反的字、词、句。
另一方面,大数据时代的各种知识,在网站、博客、微博、微信等新媒体中四处传播。而有些知识,未必就是真正的知识,可能是精神中的杂音、噪音,污染知识环境,侵蚀着人们的心灵健康。反而书籍报刊中的知识传播,经过了层层把关,凝聚着无数专业人士的智慧,更具价值。由于大数据时代的知识真假难辨,有的人感到迷惘,乃至一口认定或否定其存在的价值。事实上,作为现代人,使用网络已经成为一种重要的学习和工作手段,刻意逃避不是明智之举。笔者认为,任何一个人在大数据新媒体平台发表文章、表达观点,都应具备高度的社会责任感,理性地阐发真知灼见。倘若只是个人情绪的偏激宣泄,大数据时代的知识在未来命运如何,谁都无法预料。
不管处于什么时代,知识需要花费苦功钻研
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程省略,轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花费苦功钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不作任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行层层深入、环环相扣的论述。在很多看上去不是问题的问题追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29