京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动商业+工业4.0_数据分析师
商业4.0路径:“D世代企业”
IBM认为,D世代企业是大数据分析驱动型企业,可以战略性运用云计算、移动、社交和大数据分析工具,掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察生成最佳行动建议,数据贯穿企业研发、生产、营销、服务等管理运作。
商业4.0和工业4.0的到来,与消费者自我意识觉醒及技术进步有着密切的关系。持续丰裕的生活终将带来消费者消费态度的质变,先是品味提升,最终是消费者自我意识的觉醒。而移动互联网、智能手机、可穿戴设备的普及,让基于用户识别和地理定位的服务变得可能。这一切改变了消费者与产品、品牌、厂商、甚至和其他消费者之间的沟通方式。重要的是,通过物联网、移动互联网、开放硬件平台、各种传感器,以及3D打印技术,人类第一次有机会将创造欲发挥到淋漓尽致,通过共创、众包构造自己想要的生活方式,消费者变成了新时代的创客。商业4.0便是创客的时代。
工业4.0,是大数据驱动的智能工业
不过,仅凭创客不可能充分满足商业4.0时代所需的一切供给,实际上更为重要的供给可能来自工业4.0:通过传感器与物联网来联结无生命的生产资料、零组件、生产仪器与设备,以及有生命的生产人员与管理人员,一方面让这些生产材料在生产过程里实时分享彼此之间所处的状态信息,另一方面也允许生产人员和管理人员随时随地介入生产过程,来进行制程变更或量身定制的弹性生产。
从这个视角看,商业4.0是工业4.0在需求面的有益补充。通过对消费者行为的追踪并由此所捕捉的大量消费数据必须利用数据科学进行计算与建模,并自动转化为商业决策与运营模式,然后通过工业4.0,随时动态调整生产流程来因应消费需求的动态变化。麦肯锡全球研究院指出,制造业会从生产机械、供应链管理和商品监控系统等来源收集数字数据,他们本来就是生产和储存数据的“大户”。 早在2010 年时,制造业所新增的数据便将近 2EB(计算机存储单位),如果把这些数据全印在纸上,装在标准尺寸的四门档案柜里,会需要 400 亿个柜子才装得下。
这也与IBM定义的工业4.0的特征不谋而合。在IBM看来,所谓工业4.0,其实就是大数据驱动的智能工业。IBM大中华区副总裁冯国华认为,这是一场由首席执行客户(CEC)推动的,以“D世代企业”(大数据分析驱动型企业)的诞生与发展为标志的,以大数据、云计算、移动、社交等技术为主要驱动手段的工业革命。其中,大数据分析的重要性尤为突出。概括而言,大数据深刻改变了工业企业的生产和决策。
在工业4.0趋势下:工业的信息化水平进一步提升,尤其是“互联化”和智能化的提升。以制造业为例,在其转型升级中,渗透着“互联”和“智能” 两个关键词,可以概括为几个方面:第一,产品智能化;第二,流程的智能化升级;第三,制造业的互联网化。“互联化”和“智能化”的进程,也将产生大量数据,大数据分析和管理将更为重要,也将驱动“互联化”和“智能化”的提升。而IBM以最前沿的CAMSS技术(C是指Cloud云;A是指BigData &Analytics,大数据和分析;M是指Mobility移动;第一个S是指Social社交,第二个S则是指Security安全),将助力中国企业、行业构建大数据能力,助力抓住工业互联网化,与产品和流程智能化的趋势,为“互联化”和“智能化”打下坚实基础,实现转型升级。
CEC是催生“D世代企业”的重要推力之一
当下,我们看到制造业正在经历蜕变式的转型升级,制造业的新形态正在形成,它们开始与互联网企业、服务业携手合作,跨界与融合成为重要趋势,并由此构造出由消费者驱动并深度参与的商业4.0时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07