
运用大数据 更加接地气_大数据培训
与以往不同的是,今年的政府工作报告无论是在框架架构还是篇幅大小上都令人耳目一新。此次报告中频频闪现的“任性”“互联网+”等“网络热词”,更是拉近了与普通民众之间的距离。
那么,这份崭新的政府工作报告背后究竟凝聚着哪些不为人知的“秘密”?5日下午,政府工作报告起草组负责人、国务院研究室主任宁吉喆在国务院新闻办举行专场发布会,为中外记者答疑解惑。
总理亲自定稿
记者:今天总理所作的报告,无论是架构布局还是篇幅大小都跟以往明显不同。总理本人是不是很重视这份报告的质量?
宁吉喆:政府工作报告的起草工作从去年八九月份就开始了。李克强总理亲自领导政府工作报告的起草工作,先后主持国务院常务会议、国务院全体会议,听取汇报。习近平总书记也高度重视这项工作,他先后两次主持中央政治局会议、中央政治局常委会会议,听取有关情况汇报,并研究通过。
报告的起草经过了反复研究、反复分析、反复修改,共修改了四五十稿。李克强总理亲自主持修改,最后亲自定稿。我们尽量减少篇幅—很多不必要的虚词都省了。
报告吸收上千条民意
记者:今年的报告在起草、撰写过程中有哪些新变化?
宁吉喆:为了确保报告的质量和“成色”,起草组广纳各方观点和诉求。在整个起草及修改、定稿过程中,各地方、各部门和各单位都参与了进来。
如果说高层领导的重视和起草团队的精良为报告质量提供了大保障,那么,来自社会各界的民意则是这份报告“干货”十足的重要源泉。
为了广泛征求社会各方面的意见,李克强总理曾亲自主持召开了三次座谈会,广纳专家学者和企业负责人,科教文卫体界人士和基层群众,以及民主党派、工商联、无党派人士开展座谈会;此外,在全国范围内广泛征求地方部门和单位的意见,征求意见稿发出去将近4000份,各方面提出的意见上千条,这些经过整理都吸收到报告中。
运用云计算等现代方法
记者:大家都给这个报告点赞,觉得它非常接地气。在报告的起草过程中,你们是不是特别用心地做了相关工作?
宁吉喆:确实。这次的报告不仅分量沉甸甸,而且特别注重亲民和接地气。事实上,为了创新报告的起草方式,起草组运用智库、专家库提供支撑,运用互联网、大数据、云计算等现代方法和手段,找内容、找数据、找词语。
中国政府网还联合了数家网络,发起了“2015政府工作报告我来写—我为政府工作献一策”的活动,及时把意见和建议转给起草组。据不完全统计,在全社会收集的意见和建议(包括海外)共有4万多条,筛选整理出来的1000多条都转给了我们,其中直接收集的有数十条以上。
国家外国专家局还联合召开了政府工作报告征求外国专家意见的座谈会,来自比利时、德国、日本、新加坡、英国、美国六个国家的十几位专家提出了非常好的意见。此外,起草组召开全国人大代表的座谈会,事先听取代表的意见。我们还邀请了在京学习、培训的各地方党政负责同志,听取地市、县委一级同志的意见。
经济发展讲得更透彻
记者:您能否就此为我们扼要地解读一下政府工作报告?
宁吉喆:与往年相比,今年政府工作报告的特点比较突出。
结构框架和形式与去年相比有明显不同。去年的政府工作报告有三个部分,第一部分是2013年的工作总结回顾,第二部分是2014年工作总体部署,第三部分是重点任务。今年的政府工作报告有六大部分,前两部分是一样的,而后面的重点任务部分专门把改革开放、经济发展、民生改善和社会建设、政府自身建设作为四个部分独立出来。
如果是在去年政府工作报告的结构下,很难把这些内容摆到同一个层次去讲,只能简化了。
总而言之,政府工作报告形式上的不同反映了内容上的充实和创新,这种形式和内容的创新,都体现了“四个全面”,也就是这次政府工作报告开始就提出的全面深化改革、全面推进依法治国、全面从严治党、全面建成小康社会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23