京公网安备 11010802034615号
经营许可证编号:京B2-20210330

Excel是一个最原始而且最容易入手的分析工具之一,如果你有少量的数据进行分析和汇总的话,Excel是你的不二之选,结合丰富的函数与公式,你能轻松的得到你想要的数据,如果你懂得计算机语言,会使用VBA进行编程那就更是如虎添翼了,并且还可以轻松的制作棒图,饼图,折线图等图表。但是Excel不可能是完美的分析工具,因为他的数据容量实在是太小了,超过1万行的数据请不要使用Excel。
1.1.常用函数:
1.2.常用功能:
2.网站分析基础知识
了解一些网站分析的基础知识是必须的,你要知道什么是会话,什么是PV,什么是UU/UV等指标值的含义。如下图(摘自《网站分析基础教程第二章》)所示:
3.网站开发的知识
网站分析师通过衡量各种指标值的优劣来评价网站的状况,以及提出改善优化的对策,如果分析师自己对网站的开发和构筑知识一点都不了解,也就不能准确的通过分析指标值的高低衡量网站的运营状况。
作为一名合格的网站分析师,你需要了解一些网站建设和运营的知识,还有网站设计的知识,以及用户体验相关的知识。这样的话你才能提出更有高度和深度的分析报告
4.网络营销的知识
网站分析师的工作范围从宏观上可以分为“站内”和“站外”两大领域。站内重点在于改善用户体验,优化转化路径,SEO,分析用户行为等站内活动;站外的工作重点则在于如何更多更准确更优质的吸引用户进入网站。
所谓站外的工作主要就是指网络营销,网络营销按照具体的实现方式可以分为:展示广告(DisplayAdvertising)、PPC推广、SEO、邮件营销、视频推广、QQ群推广、博客营销、微博营销、SNS营销等。如果想成为网站分析师你需要学习如下知识:
4.1.广告类型
搜索引擎广告(PPC)
交换链接
横幅广告
邮件营销
传统媒体广告
4.2.广告相关指标
展现数(Impressions)
点击数
点击率(Click-throughRate)
CPC(CostPerClick)
CPA(CostPerAcquisition)
转化率(ConversionRate)
ROAS(ReturnOnAdvertisingSpend)
4.3.SEO知识
主流搜索引擎的排名算法
TITLE,META,Hn,h1等优化
5.测试方法
当网站分析指标的数值变得不是非常乐观的时候,或者你想做一次大规模的推广的时候,也可能是你需要对网站进行改版的时候,作为分析师需要预知改善后的效果是否能够达到预期,这一点是光凭经验很难做到的事情,那么就需要网站分析师聪明的利用师验方法进行验证,这是最直接而且准确有效的方法。
做网站分析师需要学会使用如:A/B测试,多变量测试,用户体验测试等测试方法对改善方案进行预评估,以减少新方案的实施风险。
6.交流能力
作为一名网站分析师,你需要和很多的人协同完成工作任务,其中包括项目经理,产品经理,运营经理,实施经理以及工具提供商等。高效率,准确的交流显得尤为重要。
对于交流来说,语言的表达能力作为最基本的能力要素不可或缺,但想要能顺畅的交流仅仅依靠语言是远远不够的,还需要有一定的资料的组织能力和总结能力,以及团队合作意识。
7.演讲的能力
当以网站分析师为主导进行一次网站的改版或升级的时候,通常的做法是用数字和图表来说服决策层和保守派,但事实上并不那么简单,说服更多人除了靠准确的分析数据以外,还需要网站分析师非常具有煽动性的演讲,以及面对质疑从容不迫的回应。网站分析师需要把自己的自信通过演讲的形式传播给参加会议的所有在场的人。
8.会做PPT
演讲和演示的时候,必备的利器!当然如果你能够做出很炫的动画效果将能感染更多的。
9.计划管理能力
如果你在一家小公司担任网站分析师职务的话,计划管理可能显得不那么重要,但如果你是一家大公司的网站运营经理,或者带领一个几十人的分析师团队的话,计划的管理能力将显得尤为重要。为了更好的和项目经理以及公司管理层的交流你需要具备这项技能,甚至有必要学习一些项目管理的相关知识,比如PMP认证等。(数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22