京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与人工相结合,谷歌地图够精准吗
我们使用的导航地图近十年已经发生了翻天覆地的变化。上世纪90年代,我们还在用纸质地图寻找目的地。而现在基本只需要服从Siri或她的谷歌竞争对手的导航指令。
“地面真相”算法和街景服务
不过这些导航指令背后隐藏着大多数人无法想象的众多数据。目前由于谷歌已经获得了极其庞大的地图数据,他们开始采用大数据方法,或谷歌称之为“地面真相”的算法和细致的人工努力相结合的方法,为用户提供更详尽的地图信息。该项目于2008年推出,但它一直处于保密状态,直到几年前才公开。它持续增长,现已覆盖51个国家。这一算法在提取卫星、空中和街景视图的信息时发挥了巨大的作用。
谷歌“地面真相”算法可以识别的街景信息
谷歌2007年推出了街景服务,通过让人们看到目的地周围的环境来提高用户体验。谷歌地图副总裁布莱恩·麦克伦登(Brian McClendon)。表示,“我们很快就意识到做地图的最佳途径之一,就是拥有全世界的街头照片。”
随着街景收集数据的增长,抽查他们的数据已经不是很好的解决方案。谷歌地图产品经理马尼克·古普塔(Manik Gupta)表示,现在街景车已经行驶700多万英里,覆盖美国99%的公共道路,“它实际上使我们能够利用算法建立提取信息之外的新数据层。”
这些算法借用计算机视觉和机器学习的方法来提取路边的街道编号、企业名称、限速交通标志等细节信息。 不过很多信息还是非常难以提取,麦克伦登表示,“停止标记常常很容易被忽略。转弯限制对于导航来说也很重要,但对于谷歌的捕捉算法还很难处理。因为这些标记箭头可能是被画在道路上,它们可以是不同的颜色和大小。车道标记的分析更难,因为他们并不一致。”
谷歌地图普通用户不可见的转弯限制信息。
路牌也是非常重要的信息。驾驶者听到的导航指示如果能匹配他们看到的,那么他们就能更好的被指引。但有时街道标志使用的拼写或缩写导致了很多麻烦。“匹配标志上的文字实际上是一个很困难的任务。”
另外,谷歌的算法还可以利用卫星和航空影像提取建筑物的轮廓和高度。美国大多数的建筑物现在都可以在谷歌地图上找到。对于像西雅图太空针塔这样的标志性建筑,计算机视觉技术已经可以提取出详细的3D模型。谷歌曾表示,它收购高分辨率卫星图像公司Skybox就是为了提高其地图的准确性。
计算机视觉技术提取的标志性建筑物3D模型
职业地图纠错团队和MapMaker计划
然而,卫星和算法的能力还是有限。为了提供最好的体验,谷歌雇佣了一只由人类组成的团队,手动检查并使用内部程序Atlas纠正地图的错误。谷歌公司以外很少有人见过这一应用。
这一人工检查团队看到的地图类似于谷歌地图的卫星地图混合视图,但带有没见过的彩色线条和符号。例如,道路根据行进方向进行了颜色编码。绿色和红色箭头指示了给定的交叉路口的可能前进方向。工作人员可以点击屏幕一侧的按钮,拖曳、切换或关闭各种层,控制街景视图拍摄的交通标志的出现和消失。这些工作人员每天要检查数以千计来自谷歌地图用户的错误报告,并根据需要进行修复。
工作人员可以手动将地图道路(左上)对准卫星图像
古普塔还展示了一张显示道路优先级的地图,线的宽度代表交通流量。谷歌一直用手机的位置信号映射交通条件。不过古普塔承认,位置信号也可以是其他信息的良好来源,比如转弯限制或者单行线。但他拒绝详细说明,“谷歌在很多地方使用了位置信息,但我不能谈论具体的东西。”
除了职业地图纠错团队,谷歌还得到来自MapMaker计划的帮助。2011年谷歌推出了普通用户可以参与的地图纠错项目,现在的该项目遍及220个国家。目标是提高谷歌地图在发展中国家和其他地区的准确度。因为在那里无法获得详细的地图源,“我们招募用户添加对于他们很重要的地图信息。我们会提供工具和卫星图像,因此他们可以很轻松的进行修正。”
用户可以提供公园、步道以及其他街景车无法进入的地方的信息。麦克伦登本人就曾帮助绘制Windy山的登山路径,“我用GPS记录了我登山的路径,完善了更多的精确路线。”
当你在笔记本电脑或手机上使用谷歌地图时,表面的信息之下隐藏着更多的数据。不只是道路的布局,还包括链接一个点到另一个点的逻辑信息。信息不只是建筑物的形状,也许未来谷歌地图只会不断的细节化。最终,呈现出来的可能是让人震惊的世界3D虚拟图像。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17