
周鸿祎认为,IOT时代的来临,各类内置操作系统、传感器、芯片的智能设备都将连接互联网。智能设备将会收集到亿级以上数量的数据信息,迎来数据大爆发,迎来真正的大数据时代。此时,能否利用大数据来解决一系列安全问题成为安全行业人士关心的问题。
而Palantir就是这样一家利用大数据解决社会安全问题的公司,Palantir是彼得·蒂尔在2004年创建的大数据挖掘分析公司,公司的客户包括美国中情局(CIA)和联邦调查局(FBI)。Palantir的软件能够对海量的数据库进行梳理、分析与整合,最终为客户提供具有洞察力的结论。
彼得·蒂尔在对话中表示,911之后,美国很重视反恐工作,但是反恐不能建立在给大量非恐怖分子的普通民众带来不便和骚扰的基础之上,所以怎样尽可能的减少对隐私的侵犯又能够达到最好的反恐效果,这个是Palantir希望能够做到的。
周鸿祎也认为应该平衡好大数据利用与用户隐私之间的关系,他认为怎样更好的保护用户信息应该成为企业关注焦点。此前,周鸿祎还在多个场合提过用户信息保护三原则:
用户数据应该归用户所有。周鸿祎认为,用户使用智能设备产生的用户数据被传至互联网公司的云端服务器上,应该旗帜鲜明的定义这些数据资产是用户的资产,只不过是用户把它托管在互联网公司的服务器上。
用户有知情权和选择权,用户有权不允许网络公司使用自己的数据。周鸿祎认为互联网公司利用用户数据属于正当的商业模式,但前提是用户要有知情权和选择权。即企业必须要得到用户授权。如果有用户表示不愿意个人隐私被拿来做商业交换,那么用户有权利要求互联网公司销毁和删掉用户数据,或者把数据交给用户。
公司有更大的责任保护用户数据,安全存储安全传输。面对IOT,很多企业表示要转型成互联网公司,周鸿祎表示,当企业获得大量用户数据的同时,企业有更大的责任保护用户数据,因为用户数据一旦从服务器上被窃取,极可能导致用户在其他服务上的账号受到威胁。
彼得·蒂尔表示,有些事情是人可以做的但计算机做不到,比如在一堆东西里面挑出某一件,人一眼就能看出来,但是计算机做不到。但是在数据方面,如果每一条数据都需要人来进行处理,人是忙不过来的。但数据处理分析又需要人的辨识能力,所以怎么样把人和机器的最强的优势给发挥出来,然后把他们结合好,这是Palantir最核心的技术。
因此,彼得·蒂尔认为Palantir其实是一家“反大数据”公司,数据本身是不能够自动产生结果的,仅凭海量数据和一台机器想产生出具有洞察力的结果,这是不可能做到的。因此,彼得·蒂尔说一旦听到“大数据”、“云计算”这样的词语,就会认为那些人是因为实在讲不出什么东西才用这些“热词”进行忽悠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12