京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智联用大数据加强企业与用户的匹配_数据分析师
数据对任何一家互联网企业都至关重要,一切以数据说话,已经成为未来互联网发展的趋势。如能对数据进行有效利用,细微到优化一个N级页面,宏观到可以为产品的未来发展和运营提供科学的数据参考和指导。
契约一直对数据非常感兴趣,不过还从未接触过关于招聘类产品的数据。招聘类产品的特殊性在于,不但要分析B端数据,还要分析C端,再将二者做出有机的“匹配”,相比其他互联网产品的数据要复杂得多。上周有幸收到邀请,参加国内最大招聘网站智联招聘的媒体见面会,才得以了解智联是如何将数据运用得炉火纯青的。
数据支撑下的“1%的秘密计划”
最近智联做了一个“1%的秘密计划-顶尖企业网络招聘”的活动,精选百家顶尖雇主参与,其中不乏智联最佳雇主的阿里、宝马、星巴克等顶尖企业,旨在“匹配”顶尖企业和高级人才,提前推动了春季招聘旺季热潮。
往年“网络招聘旺季”都在春节后的3、4月份,但是智联这次在春节前的1月底就开始,做出这样的决定,并不是智联单方面要抢个先,而是在分析了数十万家独立雇主和近1亿注册用户的数据后发现,今年的招聘旺季已在春节前的1月开始,所以选择了这个合适的时机来推出。
这也不能说是旺季前置,而是淡季不淡。在C端,往年大多数人都是过完年后找工作,因为他们特别看重年终奖。但是随着机会越来越多,只要能找到合适的职位,很多用户对年终奖已经没那么在意了。在B端,企业很清楚人才的重要性,如果年前不招到合适的人才,年后必然会陷入激烈竞争的困局,就更招不到人才,特别是在一些非常热的行业。
智联这次活动并没有针对所有行业、城市和用户,如果从这三个维度看的话,“顶尖企业网络招聘”活动限定的目标是:
行业,主要集中在6大行业,IT、互联网、房地产、制造业、金融和通信,这个几个行业当下最热门,人才需求异常强烈,而人才有极度稀缺。
城市, 覆盖北京、上海、广州、深圳、杭州、天津、成都等全国7大主要城市,以及其他经济迅速发展的城市及地区。虽然发达城市人才多,但是公司也多,公司之间的人才战已不可避免。
用户,不是针对刚出校门的学生和高端人才,主要是针对白领。 大多数企业不愿意招学生,因为培养周期长、成本高;而高端人才主要是被动求职,这个智联已经交给卓聘去做;而白领机会最好,可以在各种行业和公司之间跳,机会成本很低。
由此可见,智联的“顶尖企业网络招聘活动”无论在时间、行业、城市,还是企业和用户的需求,都是做了严格的数据分析,而不只是临时的头脑发热。 所以与其说是智联提前推动了春季招聘旺季热潮,不如说是淡季变旺季推动了这次网络招聘活动的诞生。
数据加强企业与用户的“匹配”
对于职位质量方面,智联对职位的真实性和职位要求非常高。比如智联最近推出1%的秘密计划,主要是针对工作零到五年的人推出的产品,而对高端人士就不一定有效。智联这就是明显希望能在B端找到最好的企业、最好的职位,再根据用户的需求,对B和C做出精准高效的“匹配”,而不是盲目粗暴的推荐简历。
智联对用户做出调研,从学生到白领再到高端人士,都有不一样的用户洞察。智联对用户进行细分,再根据不同的需求给他们提供最合适的工作和产品。比如智联这次的“1%的秘密计划”大型网络招聘会,就提供了一些职位分类,比如晋升最快的职位、福利非常好的职位、薪资任性的职位等,让每个用户都能迅速匹配到自己想要的职位,大大提高“匹配”的效率。
智联会随时跟踪用户的情况,为用户提供从校园到初入职场再到高端工作者,是职业生涯式的个人发展平台。智联会用不同方式激活用户的简历,激励用户去将简历填写完整和更新。即使部分简历确实出现一段空缺,智联通过数据分析,根据工作经验及空缺年限,也会大概知道此用户的一些基本状况。只有准确把握每个用户的真实属性和需求,才能通过EDM、精准搜索及匹配推荐等方式,直接告诉求职者有某家企业的某个职位适合你,可以去尝试下,是真正的切中到用户的要害,而不是随便发一堆垃圾邮件,让用户自己去繁琐的匹配。
从以上看来,智联其实是一家以数据为驱动的互联网公司典型。据我所知,智联在上市后,以覆盖求职者整个职业生涯为出发点,打造“3的三次方”产品模型,即为学生、白领、高端(专业人士或管理人士),匹配3类产品:测评(我是谁)、网络招聘(我能干什么)、教育培训(我如何进步),并通过线上、线下、无线三个渠道,为职场人的全面发展打造平台。通过对数据分析,对每个B和每个C做出精准服务和“匹配”,从而实现从“简历仓库”到“人才加工厂”的战略转型,为中国人才市场打造一个闭环生态链。另悉,智联招聘即将秘密推出核心在线产品,拭目以待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22