
浅谈如何运用“大数据”做好检验检疫工作
“大数据”的概念,在社会上已经提出好多年了,但检验检疫的“大数据”还未起步。
“大数据”可以理解为海量的、对于社会生活各个层面都会更加有用的数据资产。
“大数据”离检验检疫有多远?其实它就在我们身边:2014年全国出入境法检货物994.32万批次、货值1.2万亿美元,自检验检疫综合业务管理系统(CIQ2000)在2000年上线使用以来,经十几年的数据积累,检验检疫货物信息数量也以亿来计算了,而且随着我国经济规模的不断扩大,这个数据也在以更快的速度递增,这还只是一个系统存储的数据。如果能让这些海量数据“活”起来,检验检疫也就赶上了“大数据”的步伐了。
为什么要启用“大数据”?为什么要让海量数据“活”起来?随着行政审批权的下放、出口法检商品的削减,我们在自贸区概念的引领下,迎来了进出口商品风险管理、“即查即放”现场查验等新的改革措施。“大数据”在这个前提下引入,绝对不是为了改革而改革的形式主义。检验检疫的各类数据已“沉睡”了十几载,在当今改革浪潮的翻涌下,“活”下去的唯一理由就是物尽其用。
检验检疫的“大数据”会用到何处?“大数据”就像开启了一场寻宝游戏,它的核心就是分析和预测,只要我们有思想,它就会“发声”,就会“告诉”我们未来。你难以想象2009年甲型H1N1流感暴发的时候,谷歌通过大数据预测,比官方更及时、更高效地判断出了流感是从哪里传播出来的。看到这些例子,我们需要做的也许就是“脑洞大开”。2014年上海口岸截获有害生物4778种59.64万批次,辉煌的数据背后是检验检疫一线人员没日没夜的奋战,既然数据会说话,它必然可以帮助我们进行风险预警,告诉我们哪些商品更有质量风险,哪些商品、哪些包装更可能会有疫情。有了“大数据”预测,在进出口商品风险管理机制的控制下,每位检验检疫人员身边就像多了一位经验丰富的“老法师”,有的放矢才会让检验检疫工作更加高效,甚至推动质检大环境改善。
也许检验检疫的“大数据”不应该仅仅应用在直接预判中,它应发挥更大的作用。拥有了数以亿计的商品信息,就相当于拥有了一个庞大的商业信息库,它既记录了简单的进出口商品类别、数量、金额等,又深层次地涵盖了我国地域性对外发展程度、某国对中国贸易政策趋势,甚至可以与其他领域的“大数据”结合预测出新的经济方向。合理利用这个商业信息库,小到指导企业开辟进出口贸易领域的蓝海,大到预知风险、规避国际投资暗流,都可以保障我国经济积极平稳地发展。
拿着这块“大数据”蛋糕时,你是不是也隐隐感觉到了它的重量,并嗅出了空气中的危险气息?没错。我们拥有了“大数据”,但是数据源散乱且冗余太多,很多业务软件虽基于CIQ2000,但彼此孤立且数据库独立,在检验检疫业务一盘棋下却各自出招,形成数据孤岛,这些看上去很美的数据,却像散沙般难以掌握。“大数据”技术并不排斥拒绝“纷繁性”和“混杂性”,因为“纷繁”和“混杂”都包含了或多或少“关联”的特性,但是“冗余性”却会拖累“大数据”的核心——预测的时效。同时,“数”能载舟,亦能覆舟。“大数据”在发挥其功效的同时,很可能被运用到不适用的领域,可能会泄露商业机密,可能会威胁个人隐私。
“大数据”时代来了,检验检疫改革也大迈步挺进着,让检验检疫的“大数据”活起来是经济进步的趋势。应用“大数据”的一个前提,是要为数据瘦身,根据业务的关联性、结合数据库技术,将不同数据库间的冗余数据剔除,甚至利用整合或重建消除数据孤岛,让检验检疫“大数据”以最好的形式呈现出来。应用“大数据”的另一个前提就是为数据保驾护航,“大数据”要求开放、交互,这就带来了隐私、机密泄露的风险。作为国家数据的一部分,检验检疫的数据必须有目的、有保障、有监控地开放交互,并建立相应的法规,有条件、有范围地进行“大数据”预测。“大数据”可能会为检验检疫工作带来不同的指导方向,甚至会改变我们探索世界的方法,但是它的根本却离不开创新思,毕竟任何数据分析都是在我们的头脑风暴中孕育开始的,所以“大数据”还是需要检验检疫人日积月累的实践经验来支撑,并由高效创新的思维来武装,才能发挥预知未来的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19