
浅谈如何运用“大数据”做好检验检疫工作
“大数据”的概念,在社会上已经提出好多年了,但检验检疫的“大数据”还未起步。
“大数据”可以理解为海量的、对于社会生活各个层面都会更加有用的数据资产。
“大数据”离检验检疫有多远?其实它就在我们身边:2014年全国出入境法检货物994.32万批次、货值1.2万亿美元,自检验检疫综合业务管理系统(CIQ2000)在2000年上线使用以来,经十几年的数据积累,检验检疫货物信息数量也以亿来计算了,而且随着我国经济规模的不断扩大,这个数据也在以更快的速度递增,这还只是一个系统存储的数据。如果能让这些海量数据“活”起来,检验检疫也就赶上了“大数据”的步伐了。
为什么要启用“大数据”?为什么要让海量数据“活”起来?随着行政审批权的下放、出口法检商品的削减,我们在自贸区概念的引领下,迎来了进出口商品风险管理、“即查即放”现场查验等新的改革措施。“大数据”在这个前提下引入,绝对不是为了改革而改革的形式主义。检验检疫的各类数据已“沉睡”了十几载,在当今改革浪潮的翻涌下,“活”下去的唯一理由就是物尽其用。
检验检疫的“大数据”会用到何处?“大数据”就像开启了一场寻宝游戏,它的核心就是分析和预测,只要我们有思想,它就会“发声”,就会“告诉”我们未来。你难以想象2009年甲型H1N1流感暴发的时候,谷歌通过大数据预测,比官方更及时、更高效地判断出了流感是从哪里传播出来的。看到这些例子,我们需要做的也许就是“脑洞大开”。2014年上海口岸截获有害生物4778种59.64万批次,辉煌的数据背后是检验检疫一线人员没日没夜的奋战,既然数据会说话,它必然可以帮助我们进行风险预警,告诉我们哪些商品更有质量风险,哪些商品、哪些包装更可能会有疫情。有了“大数据”预测,在进出口商品风险管理机制的控制下,每位检验检疫人员身边就像多了一位经验丰富的“老法师”,有的放矢才会让检验检疫工作更加高效,甚至推动质检大环境改善。
也许检验检疫的“大数据”不应该仅仅应用在直接预判中,它应发挥更大的作用。拥有了数以亿计的商品信息,就相当于拥有了一个庞大的商业信息库,它既记录了简单的进出口商品类别、数量、金额等,又深层次地涵盖了我国地域性对外发展程度、某国对中国贸易政策趋势,甚至可以与其他领域的“大数据”结合预测出新的经济方向。合理利用这个商业信息库,小到指导企业开辟进出口贸易领域的蓝海,大到预知风险、规避国际投资暗流,都可以保障我国经济积极平稳地发展。
拿着这块“大数据”蛋糕时,你是不是也隐隐感觉到了它的重量,并嗅出了空气中的危险气息?没错。我们拥有了“大数据”,但是数据源散乱且冗余太多,很多业务软件虽基于CIQ2000,但彼此孤立且数据库独立,在检验检疫业务一盘棋下却各自出招,形成数据孤岛,这些看上去很美的数据,却像散沙般难以掌握。“大数据”技术并不排斥拒绝“纷繁性”和“混杂性”,因为“纷繁”和“混杂”都包含了或多或少“关联”的特性,但是“冗余性”却会拖累“大数据”的核心——预测的时效。同时,“数”能载舟,亦能覆舟。“大数据”在发挥其功效的同时,很可能被运用到不适用的领域,可能会泄露商业机密,可能会威胁个人隐私。
“大数据”时代来了,检验检疫改革也大迈步挺进着,让检验检疫的“大数据”活起来是经济进步的趋势。应用“大数据”的一个前提,是要为数据瘦身,根据业务的关联性、结合数据库技术,将不同数据库间的冗余数据剔除,甚至利用整合或重建消除数据孤岛,让检验检疫“大数据”以最好的形式呈现出来。应用“大数据”的另一个前提就是为数据保驾护航,“大数据”要求开放、交互,这就带来了隐私、机密泄露的风险。作为国家数据的一部分,检验检疫的数据必须有目的、有保障、有监控地开放交互,并建立相应的法规,有条件、有范围地进行“大数据”预测。“大数据”可能会为检验检疫工作带来不同的指导方向,甚至会改变我们探索世界的方法,但是它的根本却离不开创新思,毕竟任何数据分析都是在我们的头脑风暴中孕育开始的,所以“大数据”还是需要检验检疫人日积月累的实践经验来支撑,并由高效创新的思维来武装,才能发挥预知未来的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23