京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈如何运用“大数据”做好检验检疫工作
“大数据”的概念,在社会上已经提出好多年了,但检验检疫的“大数据”还未起步。
“大数据”可以理解为海量的、对于社会生活各个层面都会更加有用的数据资产。
“大数据”离检验检疫有多远?其实它就在我们身边:2014年全国出入境法检货物994.32万批次、货值1.2万亿美元,自检验检疫综合业务管理系统(CIQ2000)在2000年上线使用以来,经十几年的数据积累,检验检疫货物信息数量也以亿来计算了,而且随着我国经济规模的不断扩大,这个数据也在以更快的速度递增,这还只是一个系统存储的数据。如果能让这些海量数据“活”起来,检验检疫也就赶上了“大数据”的步伐了。
为什么要启用“大数据”?为什么要让海量数据“活”起来?随着行政审批权的下放、出口法检商品的削减,我们在自贸区概念的引领下,迎来了进出口商品风险管理、“即查即放”现场查验等新的改革措施。“大数据”在这个前提下引入,绝对不是为了改革而改革的形式主义。检验检疫的各类数据已“沉睡”了十几载,在当今改革浪潮的翻涌下,“活”下去的唯一理由就是物尽其用。
检验检疫的“大数据”会用到何处?“大数据”就像开启了一场寻宝游戏,它的核心就是分析和预测,只要我们有思想,它就会“发声”,就会“告诉”我们未来。你难以想象2009年甲型H1N1流感暴发的时候,谷歌通过大数据预测,比官方更及时、更高效地判断出了流感是从哪里传播出来的。看到这些例子,我们需要做的也许就是“脑洞大开”。2014年上海口岸截获有害生物4778种59.64万批次,辉煌的数据背后是检验检疫一线人员没日没夜的奋战,既然数据会说话,它必然可以帮助我们进行风险预警,告诉我们哪些商品更有质量风险,哪些商品、哪些包装更可能会有疫情。有了“大数据”预测,在进出口商品风险管理机制的控制下,每位检验检疫人员身边就像多了一位经验丰富的“老法师”,有的放矢才会让检验检疫工作更加高效,甚至推动质检大环境改善。
也许检验检疫的“大数据”不应该仅仅应用在直接预判中,它应发挥更大的作用。拥有了数以亿计的商品信息,就相当于拥有了一个庞大的商业信息库,它既记录了简单的进出口商品类别、数量、金额等,又深层次地涵盖了我国地域性对外发展程度、某国对中国贸易政策趋势,甚至可以与其他领域的“大数据”结合预测出新的经济方向。合理利用这个商业信息库,小到指导企业开辟进出口贸易领域的蓝海,大到预知风险、规避国际投资暗流,都可以保障我国经济积极平稳地发展。
拿着这块“大数据”蛋糕时,你是不是也隐隐感觉到了它的重量,并嗅出了空气中的危险气息?没错。我们拥有了“大数据”,但是数据源散乱且冗余太多,很多业务软件虽基于CIQ2000,但彼此孤立且数据库独立,在检验检疫业务一盘棋下却各自出招,形成数据孤岛,这些看上去很美的数据,却像散沙般难以掌握。“大数据”技术并不排斥拒绝“纷繁性”和“混杂性”,因为“纷繁”和“混杂”都包含了或多或少“关联”的特性,但是“冗余性”却会拖累“大数据”的核心——预测的时效。同时,“数”能载舟,亦能覆舟。“大数据”在发挥其功效的同时,很可能被运用到不适用的领域,可能会泄露商业机密,可能会威胁个人隐私。
“大数据”时代来了,检验检疫改革也大迈步挺进着,让检验检疫的“大数据”活起来是经济进步的趋势。应用“大数据”的一个前提,是要为数据瘦身,根据业务的关联性、结合数据库技术,将不同数据库间的冗余数据剔除,甚至利用整合或重建消除数据孤岛,让检验检疫“大数据”以最好的形式呈现出来。应用“大数据”的另一个前提就是为数据保驾护航,“大数据”要求开放、交互,这就带来了隐私、机密泄露的风险。作为国家数据的一部分,检验检疫的数据必须有目的、有保障、有监控地开放交互,并建立相应的法规,有条件、有范围地进行“大数据”预测。“大数据”可能会为检验检疫工作带来不同的指导方向,甚至会改变我们探索世界的方法,但是它的根本却离不开创新思,毕竟任何数据分析都是在我们的头脑风暴中孕育开始的,所以“大数据”还是需要检验检疫人日积月累的实践经验来支撑,并由高效创新的思维来武装,才能发挥预知未来的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09