
继腾讯、百度和新浪之后,基金公司也开始与阿里合作开发指数,并计划将相应的公募基金推向市场。
中证指数有限公司此前宣布,于2015年1月21日正式发布中证淘金大数据100指数。该指数由博时基金管理有限公司定制开发,成为首条使用蚂蚁金服旗下金融信息服务平台提供的交易型趋势统计数据的指数。“指数发布后,相应的产品可能要到春节后才可能发行。”博时基金内部人士对《中国经营报》记者透露。
作为该指数的开发公司,上海恒生聚源数据服务有限公司(以下简称“恒生聚源”)总经理金德玮透露,经过一段保护期后,其他基金公司也可以使用该指数。此外,恒生聚源还计划推出聚淘系列指数化投资品种,即通过对蚂蚁金服旗下支付宝金融信息服务平台所提供的某些消费品细分行业电商消费统计数据进行深入挖掘,转化成相应的指数化投资产品,一些公募和私募基金都对这些产品表示出了兴趣。
电商数据变身指基
根据中证指数有限公司的公告,中证淘金大数据100 指数以电商商品类目相关中证三级行业的所有股票为样本空间,从中根据综合财务因子、市场驱动因子、聚源电商大数据因子选取综合评分最高的 100 名作为样本股,并采用等权重计算。其中,聚源电商大数据因子依据恒生聚源数据服务有限公司根据上述交易统计数据加工得到的行业投研指标计算。
历史模拟数据显示,2010 年以来,中证淘金大数据100指数的年化收益率为36.7% ,年化波动率24.3% ,同期沪深300指数的年化收益率和波动率分别为-2.1%和21.5% 。
“这个指数可以供投资者跟踪大消费类行业股票。”金德玮说,最初博时基金找到阿里谈合作,此后阿里将电商大数据提供给恒生聚源,恒生聚源对相关数据进行脱敏处理(不能让市场还原出原始数据和原始数据的特性),随后加工成对应的一系列电商数据因子,能够表征这些行业销量、行业集中度、商品价格的变化趋势等等。中证指数公司在此间作为通道,进行指数发布。
在金德玮看来,该指数对大消费行业具有较高参考价值。他解释说,自2010年以后,电商行业的发展如火如荼,电商销量在社会消费品零售总额里面的比重快速提高。电商既然占到这么大比重,那它足以表征所对应行业、商品的变化趋势。随着占有率越来越高,这个表征性也越来越好。
“阿里提供的数据转化为指数产品应该还是具有很高的参考价值,因为数据样本够新、够全。”普华永道一位不愿具名的分析人士表示。
金德玮说,和国家统计局的社会消费品零售总额相比,该指数表征性更好。因为国家统计局的数据是基于抽样样本的统计而来,而恒生聚源是根据全数据样本的统计分析而来。
掘金大数据基金
据统计,目前已有腾讯、百度、新浪三家互联网大佬与专业机构或基金公司合作开发了指数,并且建立在这些指数上的公募指数型基金已经或正在推向市场。
2014年9月17日,百度与广发基金合作的“广发中证百度百发策略100指数基金”正式获批,并于10月底发行。这是首只真正意义上跟踪具有互联网基因的指数的指数型基金产品。此外,腾讯与济安金信科技有限公司早前也合作开发了“中证腾安价值100指数”,该指数已于去年3月份开发成立了一只公募基金——“银河定投宝中证腾安价值100”。新浪则与南方基金合作开发了大数据100指数、大数据300指数,这两个指数预计日后也会开发形成公募指数型基金。
其中,从数据上来看,已发行的大数据指数基金表现尚可。“银河定投宝中证腾安价值100”基金到2015年2月4日的净值为1.4270元,在不到一年的时间里,上涨了42.7%。“广发中证百度百发策略100指数基金”成立于2014年10月30日,截至2月4日的净值为1.205元,上涨20.5%。
众禄基金研究中心廖帅表示,现在是互联网时代、大数据时代,充分挖掘互联网的海量数据来辅助构建指数以及在此基础上开发指数基金,是对完善当前指数体系以及指数基金体系的一个非常有益的尝试。互联网的龙头企业有着海量数据和非常强的数据挖掘能力,相信未来基于大数据的指数以及指数基金有机会得到更多、更深入的发展,而这,可以使基民在投资指数基金时有更多元的选择。
值得注意的是,大数据基金除了可作为指数型基金这样的被动投资产品,也有成为主动型产品的趋势。
天弘基金日前公布,天弘云端生活优选灵活配置混合型基金获批,为业内首只将大数据技术引入投研的主动管理产品。该基金将通过天弘基金数据研究平台,将大数据技术引入投研模型。
济安金信也在近日宣布与国金通用基金再次合作,推出国金通用——济安通宝1号。在基于研发中证腾安价值100指数的技术模型和系统上,进行调仓频率、权重配置等方面的策略调整和优化升级,设立风险对冲机制和0.85的止损线,从“指数化被动投资策略”升级到“基于指数化和量化交易的主动投资策略”。
本文来源:中国经营报
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05