京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在政界,大家忙着测自己的亚斯伯格指数。 在商界,老板忙着问员工,你有没有大数据思维。 回答前Amazon大数据首席科学家的四个问题,测测自己有没有大数据思维吧!
「数据是『新石油』,」亚马逊前首席科学家韦斯岸( Andreas Weigend)为时下热议的大数据(Big Data)做出注解。
任教于美国史丹佛大学、柏克莱加州大学的韦斯岸,专精大数据、行动社群等技术,研究人类行为和他们所创造的数据,20多年来担任全球知名企业顾问,包括阿里巴巴、Best Buy、SAP、路透等。 韦斯岸近期受功典资讯之邀,来台进行短期参访,拆解大数据时代企业与个人将面临的改变。
他提出几个问题,大家不妨自问,自己有没有大数据思维。
问题一:你分得清公司真正的大数据问题吗?
韦斯岸提到九年前在阿里巴巴交流的经验。 他提到,在一场实作坊之中,有一位不认识的主管出席,当时现场有人发问,「我们不清楚那些资料」。 这位主管立刻反问,「你说不清楚是什么意思?你是不清楚是否有那些资料?还是不清楚资料是否正确?两者大不相同,还是不清楚如何解读资料?这又是另一种问题」。
这位主管正是现任阿里巴巴集团执行副主席、来自台湾的蔡崇信。 韦斯岸推崇,蔡崇信能问出这样的问题,表示阿里巴巴的资料识读能力很强。
「公司有那些资料」、「资料是否正确」、「如何解读资料」等,都是资料识读的一环。 但多数人分不清层次,所以第一步必须先有识读能力,才知道「公司大数据」的问题是什么。
问题二:从数据中,你可以看到那些层次?
韦斯岸提到,多数人接受的统计教育很差,加上之前资料不足。 所以,大家看到销售数据,通常只停留在第一个层次,譬如:那个产品最畅销、最重要。
但大数据时代,搜集资料不再困难,从数据中,应该看出的是「关联性」。 看到产品畅销,提出的问题应该是:是不是因为A因素,让产品畅销。
韦斯岸强调,在学校教育期间,大学生学习回答问题,研究生则是学习提出问题,在企业组织工作,重点则在于问对的问题,因为有数据,所以回答时常很简单。
问题三:客服人员是成本,还是价值?
韦斯岸说,在大数据时代,每个业务环节都有大量的数据,每个环节都可以改善,把成本变成利润。 在亚马逊任职期间,韦斯岸与Amazon创办人贝佐斯花了约50小时,写下亚马逊事业方程式,那时争论的问题是:人力导向的电话客服中心是成本吗? 因为如果客服过程顺利,顾客会觉得:亚马逊真是间好公司,那么客服就从成本转换为公司利益。
韦斯岸举的另一个例子是:Zappos,这家以销售鞋子为主的网站,最著名的服务是顾客买一双鞋,将会收到该款3双不同尺码的鞋,供顾客试穿,不合的另2双鞋免邮资退还。 邮资看似是成本,但只要消费者将拥有一双非常合脚的鞋子,就会转告亲友。 这就是把企业最讨厌的退货率,转化成一种行销利益。
问题四:你愿意跟数据分析人员说话吗?
韦斯岸提醒,在大数据时代,大家都要培养吃资料寿司(Data Sushi)的意愿与好奇心。 过去,多数上班族只喜欢看已经被处理过的资料。 但未来,大家可能得学着吃「比较生」的数据材料。 即使是管理者也必须跟数据分析人员对话,真正了解资料涵义。
他指出,资料科学是新兴热门词汇,必须结合多项技能,第一项技能是「好奇心」,第二项是「处理资料的意愿」,愿意正视资料,无论规格大小或内容对错,都不会逃避,也不要求先清理资料,否则就等于在处理加工品。
第三项则在于「合作的意愿」,行销人员必须与数据分析人员对话,真正了解资料涵义。 第四项,才是「说出资料的故事」。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24