京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在政界,大家忙着测自己的亚斯伯格指数。 在商界,老板忙着问员工,你有没有大数据思维。 回答前Amazon大数据首席科学家的四个问题,测测自己有没有大数据思维吧!
「数据是『新石油』,」亚马逊前首席科学家韦斯岸( Andreas Weigend)为时下热议的大数据(Big Data)做出注解。
任教于美国史丹佛大学、柏克莱加州大学的韦斯岸,专精大数据、行动社群等技术,研究人类行为和他们所创造的数据,20多年来担任全球知名企业顾问,包括阿里巴巴、Best Buy、SAP、路透等。 韦斯岸近期受功典资讯之邀,来台进行短期参访,拆解大数据时代企业与个人将面临的改变。
他提出几个问题,大家不妨自问,自己有没有大数据思维。
问题一:你分得清公司真正的大数据问题吗?
韦斯岸提到九年前在阿里巴巴交流的经验。 他提到,在一场实作坊之中,有一位不认识的主管出席,当时现场有人发问,「我们不清楚那些资料」。 这位主管立刻反问,「你说不清楚是什么意思?你是不清楚是否有那些资料?还是不清楚资料是否正确?两者大不相同,还是不清楚如何解读资料?这又是另一种问题」。
这位主管正是现任阿里巴巴集团执行副主席、来自台湾的蔡崇信。 韦斯岸推崇,蔡崇信能问出这样的问题,表示阿里巴巴的资料识读能力很强。
「公司有那些资料」、「资料是否正确」、「如何解读资料」等,都是资料识读的一环。 但多数人分不清层次,所以第一步必须先有识读能力,才知道「公司大数据」的问题是什么。
问题二:从数据中,你可以看到那些层次?
韦斯岸提到,多数人接受的统计教育很差,加上之前资料不足。 所以,大家看到销售数据,通常只停留在第一个层次,譬如:那个产品最畅销、最重要。
但大数据时代,搜集资料不再困难,从数据中,应该看出的是「关联性」。 看到产品畅销,提出的问题应该是:是不是因为A因素,让产品畅销。
韦斯岸强调,在学校教育期间,大学生学习回答问题,研究生则是学习提出问题,在企业组织工作,重点则在于问对的问题,因为有数据,所以回答时常很简单。
问题三:客服人员是成本,还是价值?
韦斯岸说,在大数据时代,每个业务环节都有大量的数据,每个环节都可以改善,把成本变成利润。 在亚马逊任职期间,韦斯岸与Amazon创办人贝佐斯花了约50小时,写下亚马逊事业方程式,那时争论的问题是:人力导向的电话客服中心是成本吗? 因为如果客服过程顺利,顾客会觉得:亚马逊真是间好公司,那么客服就从成本转换为公司利益。
韦斯岸举的另一个例子是:Zappos,这家以销售鞋子为主的网站,最著名的服务是顾客买一双鞋,将会收到该款3双不同尺码的鞋,供顾客试穿,不合的另2双鞋免邮资退还。 邮资看似是成本,但只要消费者将拥有一双非常合脚的鞋子,就会转告亲友。 这就是把企业最讨厌的退货率,转化成一种行销利益。
问题四:你愿意跟数据分析人员说话吗?
韦斯岸提醒,在大数据时代,大家都要培养吃资料寿司(Data Sushi)的意愿与好奇心。 过去,多数上班族只喜欢看已经被处理过的资料。 但未来,大家可能得学着吃「比较生」的数据材料。 即使是管理者也必须跟数据分析人员对话,真正了解资料涵义。
他指出,资料科学是新兴热门词汇,必须结合多项技能,第一项技能是「好奇心」,第二项是「处理资料的意愿」,愿意正视资料,无论规格大小或内容对错,都不会逃避,也不要求先清理资料,否则就等于在处理加工品。
第三项则在于「合作的意愿」,行销人员必须与数据分析人员对话,真正了解资料涵义。 第四项,才是「说出资料的故事」。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09