
现实世界是大数据的下一个重大契机
Matt Ocko是风投公司Data Collective的全权合伙人,曾在Uber公司2011年第二轮融资活动中参与投资。他还是Facebook的早期投资人。在2012年与正式启动Data Collective风险投资之前,Matt Ocko已经针对数据库公司进行了若干年的投资。2012年合作开始后,他们的天使投资遍及几乎所有领域的热门初创企业,囊括了从MemSQL这样的数据库公司到Planet Labs这样的卫星成像公司。本周Ocko参加了Gigaom的Structure Show秀,以一名投资者的身份对他感兴趣的和觉得过火的东西进行了阐述。
对于科技领域的很多话题,他的意见都相当有趣、值得聆听,下面是我们采访的集锦,想要了解更多,请关注他在Structure Data中的讲话(于3月18日-19日在纽约),同时受访的嘉宾还有Hilary Mason,他们就数据的未来进行了有趣的探讨。
同时几家大数据采集公司也会列席,包括Enlitic(注:通过大数据帮助医生分析图像)、Blue River Technology(注:致力于将机器人引入农业生产)和Interana公司(注:为其他企业提供便利的数据驱动决策服务)。
有用不代表着一定有吸引力
像是Snapchat和Slack这样的软件非常吸引人,但是Ocko希望能够看到开发精英们(在他看来,可以在当今的基础科技方面创造奇迹的那些人)将注意力转向类似供应链管理或者农业这样的应用上面,因为这些应用可以对“GDP很大程度上产生重大影响”。Ocko表示:这些领域也许看起来很是单调乏味,相应的公司与科技也可能会很低调,“有点冷门、有点失宠”,但是所带来的获益会非常巨大。
只要看一下SAP公司,他解释道:
他们说:“嘿,让我们把账户、供应链还有生产与计划整合起来吧,这样我们就能知道你工厂里下一步要做什么,制造起来花费几何,成本多少、售价多少。”对于制造业来说,这是具有改革性质的,我认为它比早期的工业机器人还要更有改革性。将人们所想的从所听到的东西中抽离出来,对于这些公司而言是一个巨大的经营优势。
或者个人电脑。 Ocko表示:个人电脑的概念在20世纪70年代初次被引入的时候,并未获得很多人的喜爱。“但是它比你能构建的任何1000组的大型主机都要有改革性,它创造了今天我们所从事的这个行业。”
软件吞并实验室
Ocko表示,数据采集特别关注的是:在针对从根本上提高生活质量的公司上,新科技所拥有的巩固其基础的潜力,一般来说主要集中在解决艰难的科学难题上。
他说:“我们称其为软件吞并实验室。我们可以看到,在计算生物科学方面以及相关的信息领域,无需巨额花费,甚至零支出,你就可以构建生物模型,并借此了解如何能够令人类、动物甚至地球更加健康,同时顺应了我们必须遵守的资本制度(即需要盈利的目的),但是在赚钱的同时,这些行为又有着积极而深远的影响。
在应用上,而非科技上(甚至深度学习这样的热门科技上)下注
甚至是在科技领域最热门的那个点上,Ocko表示:投资关注的角度仍然在于这种科技是否有真正的和必要的应用,而不是仅仅关注一些很酷的研究,或者也许只是一个大名头。比如,他在医学成像的深度学习初创公司Enlitic上进行了投资,但并没有仅仅因为会被立刻疯狂收购,而对构建一系列深度学习组合的初创公司表示出兴趣。
Ocko表示:“就像双手合十祈求天上掉下个DeepMind那样4亿美元的融资……因为公司里的人太过聪明,对我而言太过高大上……只能把你那些有限合伙人(注:有限合伙人以其认缴的出资额为限对合伙企业债务承担责任)的资金给吓跑。”
迄今为止,对于Hadoop和市场软件我们都只是“还好而已”
然而,即便对于一些真正创新性和改革性的科技来说,也总有一个市场饱和的临界点。这并不代表那些领域的初创公司会落得玉石俱焚的下场——他们可以建立很好的公司,但是对于投资人来说,他们就没那么大吸引力了。
其中一个代表就是Hadoop公司,在Ocko看来仍有大量实际运用的可能,但是在获取巨额估值方面,可能已经达到极限了。“如果你开启了某个分类的Hadoop群组,很多其他类别的Hadoop仍有市场,但是就像你说的,我无法确定那些公司是否也能成为巨擘。他们也许是很不错的公司,但是在VC看来,对于其他公司的投资就不会成为像是对Hortonworks、MapR或是Cloudera的并购那样的全垒打了。
另外一类就是通过机器学习提高其效率的销售和市场软件。“我看到过的从事管道矿业方面的公司数量,无论他们是致力于市场最优化还是销售最优化,不夸张地说要超过100家了。”Ocko说道,“如果有这么多公司想法如此类似,我认为这代表着他们可能会走向悲剧。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15