
浏览器化软件目前还没有成为主流,但在2015年一定会成为主流,并将直接改变软件企业的架构。企业必须调整人员、部门和产品,以适应新变化。
■人物名片
刘政
IEEE协会高级会员,中国计算机协会大数据专家委员,清华大学数据科学研究院顾问,中国软件行业协会过程改进分会常务理事和监事会长,2009年中国最佳软件研发中心领军人物,2013年中国软件工程成就人物,发展·创新十年(2004-2014)中国软件和服务外包卓越成就人物,并带领SAS连续8年10次获得中国最佳雇主称号。
近年来,软件与硬件、应用与服务紧密融合,网络化、服务化、融合化趋势日益明显。同时,大数据、云计算在各种场合被频繁提及,并且已成为新的生产力。大数据、云计算与软件行业的融合,已成为软件企业转型的重要步骤之一。近日,本报记者在北京对SAS(赛仕)软件研究开发(北京)有限公司总经理刘政进行专访,探索软件业如何改变自我、如何对IT和应用架构进行重新审视。
大数据云计算为中国软件企业提供了新的发展机遇
记者:大数据、云计算汹涌而来,软件企业应该如何应对?
刘政:上世纪90年代开始,计算机慢慢普及,中国软件业快速发展,用友、金蝶等一批国内软件企业迅速崛起,SAS等国外软件企业在中国得到长足发展,可谓是软件企业的“黄金年代”。经历快速发展期,软件企业再上一个新台阶缺少更大的动力。大数据、云计算的出现可谓正当其时,数据分析在生产生活中扮演着越来越重要的角色,软件企业应当牢牢抓住机遇,跳出IT的局限来看待大数据,利用大数据为应用赋予价值,反过来又可以通过应用为大数据增值。大数据、云计算汹涌而来,驱动软件企业变革,要求软件企业为适应大数据、云计算时代,必须重新写代码、开发新的软件。
记者:数据分析是如何发展起来的?
刘政:SAS是数据分析软件的开拓者,也见证了全球数据分析软件发展的历程。二次世界大战时期,美英两国率先使用运筹学的方法解决当时迫切需要把各种稀少的资源以最有效的方式分配给各个战场和军事单位的问题,便有了数据分析的雏形。到了1966年,计算机刚刚出现,美国农业部需要统计软件分析大量农业数据,美国南方8所大学获得研究基金,开发通用目的的统计分析软件包。这个软件包的名字成为了后来SAS公司的名字和产品基础。到了上世纪70年代,数据分析在美国已有了一定规模。
目前对非结构化数据的处理能力仅处于初级阶段
记者:在数据分析方面,现在与过去的最大区别在哪?
刘政:数据分析的数量、种类、速度、方法都发生了巨大变化。过去的分析数据都是几十兆,达到G已经非常大。进入大数据时代,数据量呈爆炸式增长,现在已经是TB级了。大数据不仅是数据量大,类型也变多了。以前多是结构数据,而现在除了结构数据,还有大量的非结构化数据,包括文本数据、音频数据、视频数据、图像数据等。目前对非结构化数据的处理能力仅仅处于初级阶段,还不能像分析结构数据一般自如。传统数据分析方法和技术已经不能满足需要,数据处理技术从过去的单线程变成了多线程,高性能分析架构形成了今后数据分析的骨干架,目前比较普遍采用的是内存分析、数据库内分析和网格分析三项技术。
记者:内存分析、数据库内分析和网格分析具体是什么技术呢?
刘政:内存分析技术是把数据直接放在内存做分析工作。数据库内分析是数据量大的时候,数据传输过程非常慢,现在我们把各数据分析的模型放在数据库里,只要给数据库发指令,就可以调用数据模型直接对库里的数据进行分析,这样就节省了数据传输的时间。网格计算分析就是分布式计算,把要处理的数据放在不同的机器上运行,然后把计算结果合并。把这三种技术结合起来,可以解决数据量大的问题,十余行的数据几乎可以达到实时处理。
浏览器化软件今年定成主流,软件企业须调整以适应新变化
记者:软件企业的商业模式将会是什么?
刘政:现在许多国外软件企业已停止开发安装在单个机器上的软件,多是开发浏览器化软件,只要能上网,就能使用软件公司在“云”上的产品,使用的硬件资源、软件资源在“云”上租到。“云”模式也将会越来越普及。
SAS的浏览器化软件产品已经达到总产品数的三分之一。浏览器化软件目前还没有成为主流,但在2015年一定会成为主流,并将直接改变软件企业的架构。企业必须调整人员、部门和产品,以适应新变化。
记者:国内软件行业的发展趋势是什么?
刘政:软件业处于一个变革时代,云计算、大数据使得软件和数据将来都会到“云”上。过去软件公司开发的很多软件都将过时,现在需要开发的是一种能够运行在“云”上的软件。这对国内软件开发者来说是一个非常好的赶超机会。但中国现在最缺的不是软件技术,而是软件业生存的环境。各大企业不找软件公司购买软件和服务,而是自己开发软件。这不仅加大了成本、周期长、不够专业,而且破坏国内软件业发展的生态环境。只有建立一个良好的软件生态环境,各专各行,中国的软件公司才能不断更新版本,生产出能够和世界上其他公司竞争的软件。此外,加大开发数据分析产品和开源软件将是一个大趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16