
食品安全问题的原因众多,产业链分散带来的管控漏洞毫无疑问是其中的关键。大数据为解决这一问题提供了另一种视角。
“建设全产业链的可追溯系统体系,让产品的每一个环节对用户透明。”1月6日,黑龙江飞鹤乳业的信息化项目负责人表示,在其系统上可以查到为一罐奶粉提供奶源的奶牛相关信息,如泌乳、健康状况、饲料信息以及鲜奶接收与化验情况等。
该系统2012年上线,由IBM及其合作伙伴汉端科技搭建。除了安全监管方面的裨益,这套产业链可追溯体系还为飞鹤提供了大量可视化的企业经营数据,包括生产流程、检验、物流、仓储、经销商与分销、客户交易等等。
尽量杜绝人为因素
去年3月15日,全国消费者权益日当天,飞鹤推出了全产业链可追溯手机APP,用户可通过手机扫描查询到一罐奶粉的生产信息、奶源信息、销售环节和流通环节,以及质量环节的检验地、检验时间信息,并且下载有真实质检责任人签名的质检报告。
实现这一功能的基础,必须在全产业链建设业务支撑系统,实现全产业链透明。飞鹤拥有自己的饲料种植、牧畜种植、饲料加工工厂,以及万头大牧场、核心加工工厂,收购关山乳业之后,又增添了经销商管控体系和消费者服务,在全国有13.5万销售店面,2万多名员工。
每一个环节,都需要信息化改造。“奶牛、饲料要打上标签,工人的工作过程、工作结果的数据要随着人员操作信息、时间节点信息同步系统中。”飞鹤负责人介绍,“奶粉封装的同时,产品身份信息也同时激光刻蚀到罐上。”
不过,食品行业大数据不仅仅要实现各个环节的透明化,还要在信息采集的环节尽可能杜绝人为因素。
“要防止信息造假。”该负责人特意指出,信息采集过程要杜绝人为更改的可能,确保可以通过最终信息还原真实生产过程。
所有的信息录入的同时就会实时上传到北京数据中心,有数据库审计系统自动的记录数据的采集过程、变化过程。此外,公司还设有稽查小组。他们要保证两件事:第一,产品赋码、产品信息产生是在实实在在业务环节产生;第二,进了后台的数据不可修改。
让沉淀数据产生效益
“所有生产环节的数据都在北京,它们最真实反映了公司每一个业务环节的成本、效率等关键指标。”这位飞鹤负责人表示,当企业信任这些透明化的数据之后,企业的生产、管理、组织、内控就已经做到一定程度了,“业务数据的沉淀,就是企业资产,有没有通过这些资产形成效益,才是关键”。
每一个实现全产业链的食品公司都拥有冗长产业链条,众多流通环节的存在使得企业效率不可避免的被降低。“企业规模越大、链条越长。”汉端科技总经理杨宾认为,全行业都在迅速扩张,每个公司严重短缺管理人才,每个企业都面临效益问题。
杨宾举例说,比如库存,企业、经销商都不希望出现库存积压问题,但由于管理人员无法精确把握每一个业务环节的需求,库存积压问题往往不可避免,“现在将企业的业务环节投影到大数据,通过数据分析为企业提供业务逻辑”。
飞鹤信息化负责人告诉记者:大数据系统上线之后,整个供应链环节和仓储物流体系都能够得到有效管控和效率提升,如有多少库存都可以实时看到,产品货龄和库龄达到一定天数,系统自动告警。
不过,他也告诉记者,在产品流通环节的大数据战略实施较为困难,“因为数据透明化,打破了原有的运营模式,也增加了信息采集的工作量,流通环节需要一些时间过渡”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19