京公网安备 11010802034615号
经营许可证编号:京B2-20210330
沙子并不重要,重要的是淘金术;数据本身并不能直接产生价值,挖掘、分析、应用环节,才是数据价值集中体现的环节。
大数据回避不了的成本问题
对于一个上马了EPR系统的大中型企业,那么很可能每个月要面对数以TB级别甚至更大容量的业务数据增量,企业也要为此支付高额的大数据存储、备份、安全防御的开支。
我们一方面要认识到,信息系统的上马会大幅度地提升信息流的传递和分享,有助于业务流程的效率提升,但在另一方面也在加大了企业的成本开支。
有人做过一个形象的比喻,有价值数据就像沙子中的金粒,稀少而珍贵。很多企业的数据备份则像是为了留下这些金粒,而建设了足以装下大沙堆的超大仓库。我想将这个比喻引申一步,那就是做大数据解决方案的厂商因为帮你存下了沙子,从你手里拿走了金子;而你淘遍了整个仓库沙堆得来的金子,很可能比你花出去买沙子的还多。如果你没有很好的炼金术,请别花那么多钱建仓库,也没必要存那么多沙子。
在专业的大数据存储和备份市场,去重率和压缩比都是很重要的指标,但到了真正的项目实施中,因为有用数据夹在大量的无用信息之中,用户往往在数据存储的过程中花了大量的冤枉钱。针对数据的挖掘可以产生巨大的商业价值,但同时大量的无价值数据也会耗费大量的成本,所以我们应该对大数据有个投入产出的概念,而不能只关注大数据可能产生的效益,而忽视了大数据的成本问题。
大数据有时是易碎品和危险源
在IT企业大力宣传云计算和大数据价值的时候,其实是没有几个厂家敢拍着胸脯说我能100%保证信息安全问题。
在今年春天举办的中国云计算产业论坛上,国内信息化专家曾经明确指出,政府等对信息安全敏感的客户,绝不能使用公有云。所以对那些对安全性要求极高的客户而言,大数据带来的安全隐患也足以让他们对大数据应用望而生畏。
用专业存储备份和信息安全软件,可以在很大程度上降低数据发生损坏和失窃的概率,但只是概率降低而已。我非常看好大数据市场,它未来会是IT产业中利润最丰厚的一块蛋糕。因为原始的大数据是脆弱而易于受到攻击的,我们多数人和多数企业,都需要花更多的钱来保护它。
大数据是未来极为重要的技术手段,它有可能对现有的商业社会产生重大的影响。但我认为短时间内,大数据并不会成为现代商业社会的核心要素,也不会成为最重要的生产要素。就如同微薄上的雨夜求助信息,可以让很多人知道你在三元桥需要车辆援助,但真正能把你送到家的是那些那些午夜冒中着巨大被淹风险的热心市民和那辆涉水受损的车。
你可以观察一下,现在大谈大数据和云计算的主要是那些厂商,他们如此热衷,是不是根本目的就是为了多卖几台高性能服务器或者网络设备?
人,是现代生活的主角,而大数据只是人类活动的衍生物而已,虽然《黑客帝国》中对此有疑议,但起码在我观察到的世界和维度里是这样的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21