京公网安备 11010802034615号
经营许可证编号:京B2-20210330
听说过这句话吗:一千个影迷心中,就有一千个哈利波特。
一部电影好不好看,这绝对是能让两个老朋友打起来的话题。这位只看特效闪瞎眼的科幻片,那位独爱温情脉脉的文艺片,这位推崇意象塞满屏幕的魔幻现实风格,那位偏好严谨精妙的悬疑推理剧情。青菜萝卜,各有所好,哪部电影更经典,一时间,谁也说不服谁。
打一架决定谁说的对?且慢动手,咱们来听互联网电影大数据的……什么?电影大数据是个啥?
这就要从互联网电影数据库(Internet Movie Database, 简称IMDb)说起了。这个数据库,是亚马逊网络电子商务公司旗下的一个网站,在这里,你能找到几乎最详细的电影资料,从演员表、票房收入到剧情梗概、幕后花絮,可谓是应有尽有。
其中最要紧的一项,就是由网友们提交的电影之间的“联系”。这些联系包括“参考”、“恶搞”、“放映”、“续作”等等。也可以说,这种联系,是新拍的电影,对老电影的“引用”,俗称“向经典致敬”。
这样致敬的例子太多啦,最近很火的电影《一步之遥》里,姜文坐在百叶窗前,黑西装的领子上别着一枚红玫瑰,怀里还抱着一只兔子。眼尖的观众立刻就看出来啦,这不是经典美国电影《教父》里的场景吗,一样的布景和镜头景别,一样的服装和光线,甚至还有一样位置的玫瑰花。
哦,有一点儿不同,马龙·白兰度怀里抱着的是只猫。
甭管抱的是什么,这就是向经典致敬了。《教父》被致敬的次数,已经排到了电影史上的第八位。这部1972年的名作,自入选以来,已经被长间隔引用了162次。排名第一的影片《绿野仙踪》于1939年上映,其长间隔引用数据是565次,把第二名《星球大战》系列甩出了200多次,后者的数据是297次。
上文说到的长间隔引用次数,正是芝加哥西北大学复杂系统研究院联席主任路易斯·阿马拉尔教授所认为的评价电影重要与否的最佳指标。
路易斯·阿马拉尔教授率领的科学团队,已经为电影衡量标准这事儿奋斗了很久。在他们看来,票房、专家点评、获奖与否、观众口碑,统统做不得准——票房可以靠宣传和排期,专家和观众的看法都有主观喜好因素,甚至会“带有偏见”,评奖的猫腻就更多了——除了冰冷又可爱的大数据,还有什么标准能更显得科学呢。
为了分析电影的影响力,研究团队选择借助互联网电影数据库的引用功能:一个是计算电影被搜索引擎超链接的次数,另一个是计算电影在上映后,25年以上的时间跨度中,被其他电影引用的次数,也就是长间隔引用次数。
25年这个阈值,是研究团队通过观察经验分布和零模型对比发现的。低于这个年限的电影被引用,还很有可能是受潮流影响,只有真正的好片儿,才受得住时间的考验。
事实上,在预测电影的重要性方面,数据科学也的确要比影评人更客观。阿马拉尔教授带着他的“长间隔引用次数”,一出手就能镇住一片。在海量计算之后,研究团队给出的“最具影响力”的电影榜单里,上榜影片入选美国国家影片登记表的,比其他各种专家的影评意见都靠谱。看来,大数据不但能预测商业行为,还能帮你列一份必看电影名单,只不过等待的时间有点久,要花足足25年。
不过,人到底是主观的动物。我猜想,对那些骨灰级影迷而言,任你大数据再科学、再准确,真到了讨论电影好不好看的时候,两个老朋友仍然能打起来。比如我,就是喜欢《星球大战》甚于《绿野仙踪》,无论大数据怎么显示,对我来说,排名第二的这部片子,还是比第一名的重要。
还是那句话,一千个影迷心中,永远有一千个哈利波特!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07