京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别走进大数据的误区
近年来,随着云计算和大数据的迅猛发展,已然让“大数据”(大数据分析师)和“云计算”成为了当下最时髦的词汇。从IT界到、金融界,再到物流界、营销界,乃至医疗界、教育界……无论是界内界外人士几乎都已快形成“言必称云”、“言必称大数据”的口头禅。
但如果真遇到一个“较真儿的”,发出这样的提问——到底什么是大数据?大数据到底有什么价值?我怎样才能得到大数据价值?……是那头黄色的Hadoop小象?是动辄XXXBIT的高大上数据量?又或者是千万级别的用户信息?那估计很多口口声声不离大数据的人可能都言语含糊解释不清了。
那么,到底该如何来看待大数据呢?还是听听专家的观点吧。据国内新兴应用交付厂商太一星晨产品总监冯晓杰表示,大数据单从字面意思似乎不难理解,可以认为是海量级的数据,但是在这海量级的数据究竟意味着什么,这在很多业内外人士的概念里还纯在着一些认识误区。
大数据误区一:只要大就好
当技术哥在会议室里刚说完这句话的时候,秘书MM正巧推门进来,微微愣了一下就脸红红地退出去了。
如今,很多人提起大数据,如果不提上几嘴“日处理数据量XXGB,上传图片XXGB,并发数XXX”“Hadoop集群拥有XXXX节点,总存储XXPB”……诸如此类的技术语言,都很怕别人觉得自己不专业。但是,难道真的只有数据大了,才能达到大数据的登峰境界?才能数人合一地达成大一统的目的?
数据如果仅仅是大那是没多大用处的!就好像资金的意义在于如何使用周转一样,数据大了,但不使用,让它孤零零地偏安机房一隅,那它就不是大数据了,而是有点“败家子”的意思。
比如不少传统的门户网站,基本上就处于“坐拥金山却无福消费”的境况。每天上亿的用户量,却只是简单的广告呈现,没有通过对数据的分析产生更多价值。
大数据误区二:只有技术大牛才懂大数据
虽然很多人口口声声离不开大数据,但是真问他到底懂多少时,其中一部分人可能会说:“我就是懂些皮毛,真正技术层面的大数据我也不懂,你还是问那些技术大牛去吧,他们才真懂。”
其实这样的观点并不全对。比如诸葛亮很懂兵法,他知道该在哪里摆阵,该在哪里伏兵……但是,他不必知道关羽是如何耍大刀,也不必知道张飞的丈八蛇矛在打仗时是扎还是砍。
其实,对于大数据的应用更多的是一种战略能力,而非细节的执行技能,数据分析师这种能力是可以帮助决策者能从无尽的数据里看出商机看出价值,从而为企业带来更高的利润。而作为决策者并不用太关心在技术细节层面,大数据到底怎么技术生成,又是如何理顺提升用户体验的。
大数据误区三:是个公司都得上大数据
在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
虽然大数据固然是个香饽饽,但不是所有人都能消化得了,或者说并不是所有都有上大数据的必要,而是要衡量企业的现状,看清楚主次矛盾,或是要考量好投入产出的回报率,大数据并不是适合所有企业的现状。
比如,对于中小型网站来说,一上来就盲目追求先进“高大上”的技术架构,那就有点“宰牛刀杀鸡”的意思。对于这类网站,首要考虑的是商业运作模式和推广,只有等到用户量飚升后,再去考虑技术升级这种大事儿。
再比如,在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
如同一个双选题:A.日登陆用户1000人,架构完全参照美国亚马逊从不宕机;B.日登陆用户10万人,每天因为高并发不得不宕机三次。你会选什么?
大数据误区四:我就要海量数据
自从大数据概念火了以后,不少企业在遇到问题的时候,总是会情不自禁的就会想到“是不是我的数据量不够?”“是不是如果有了海量的大数据就能变得更好?”其实,这又是陷入了一个误区。
这又回到了大数据价值和金钱价值的类比概念上。比如用搜索引擎搜索一下“存款 贬值”,那么很快就可以发现类似这样的信息:“五十年前的百万变13块”, “一万元存一年赔19元”……显然,不流动的钱,是越放越没有价值,而基数越大,可能导致的损失就越大。
金钱如此,大数据亦然。只有像比特币玩家们一样,不停地使用数据,并以无比的热情挖掘数据背后的关系和价值,才能如滚雪球一般,使数据之间的相互关系更丰富更完善。同理,对于企业的大数据来说,只有充分利用大数据,让大数据充分流动起来,不断的实现增值效果,那么才有机会更大的释放大数据的能量。
因此,对于企业决策者来说,看待大数据必须有一个清醒的认识,当在脑袋发热准备花大价钱上大数据之前,都一定得先想明白透彻了:“我真的需要大数据吗?大数据真的能为我所驾驭吗?”数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21