
小心大数据的陷阱_数据分析师
前不久腾讯举办了一场夏季思享会,其主题是大数据。关于大数据,大家炒作得更多的是机遇、威力,比方说越来越多人利用 Google 的大数据来研究趋势,辅助分析决策,但是这场思享会从另一个角度分享了一个很好的思考:大数据也可能是“大忽悠”。
而最近对 Google Flu Trends(流感趋势)的一些研究正好佐证了这一点。
说到 Google Flu Trends,首先必须先提一提 Google Trends 和 Google Correlate。Google Trends 利用对用户搜索的大数据分析来获得人类某些活动的趋势,只要在 Google Trends 上输入某些查询关键字即可返回相关活动的数据序列。而 Google Correlate 则是输入数据序列可返回一组结果呈类似模式(相关性)的查询,有点类似于 Google Trends 的反函数。
Google Flu Trends 是 Google Trends 最早也是最知名的应用之一。鉴于很多人患流感是往往会上 Google 查询了解疾病情况和用药,因此 Google 发现这种查询与流感爆发存在着某种相关关系。Google Trends 曾经有过多次对流感的成功预测,包括 2011/12 年的美国流感、2007/08 年瑞士流感、2005/06 年德国流感、2007/08 比利时流感等,其及时性甚至要比美国疾病预防控制中心还要高。
这显示出了搜索“流感”与流感爆发的相关性。
另一个例子是“宿醉”。比方说在 Google Trends 输入“hangover(宿醉)”,你会发现这种情况在周六开始冒头,然后周日到达巅峰,而到了周一则急剧下降。这种模式与输入“伏特加”的查询结果类似(滞后一天)。
但是数据越大未必就能带来更高的预测率。甚至还会带来“假规律”和“伪相关”。比方说,搜索 2004 至 2012 年间的美国汽车销售与“印度餐馆”,结果发现二者之间竟然存在相关关系。这个东西显然是无法解释的。
伪相关的原因是什么呢?
首先,相关性并不意味着因果关系。比方说,Google Flu Trends 对趋势的预测并非屡试不爽。有几次 Google Trends 就严重高估了流感病例的数量,包括 2011/12 的美国流感,2008/09 瑞士流感,2008/09 德国流感、2008/09 比利时流感等。
英国伦敦大学学院的研究人员对此进行了研究。结果发现,到 Google 搜索“流感”的人可以分成两类,一类是感冒患者,一类是跟风搜索者(可能是因为媒体报道而对感冒话题感兴趣者)。
显然第一类人的数据才是有用的。其搜索是内部产生的,独立于外界的。因此这些人的搜索模式应该与受到外界影响而进行搜索的人的模式不同。而正是第二类人的社会化搜索使得 Google Flu Trends 的预测失真。这正是因为 Google Flu Trends 把搜索“流感”与得流感的相关性当成了因果关系所致。
而稍早前美国东北大学与哈佛大学的研究人员对 Google Flu Trends 的失真案例进行的另一组研究则认为,这反映出了热炒大数据的氛围下诞生的一股大数据自大思潮。这股思潮认为,大数据完全可以取代传统的数据收集方法。其最大问题在于,绝大多数大数据与经过严谨科学试验和采样设计得到的数据之间存在很大的不同。首先,大未必全;其次,大则可能鱼龙混杂。
此外,Google搜索算法本身的变化也有可能影响到Google Flu Trends的结果。这个原因不难理解。要知道,Google 搜索的调整非常频繁,单去年就进行了890项改进。其中就有不少属于算法的调整。媒体对于流感流行的报道会增加与流感相关的词汇的搜索次数,也会令 Google 增加相关搜索的推荐。从而令一些本身并不感冒的人也对流感产生了兴趣,进而把数据弄脏。
如何清洗数据呢?归根到底还是需要对数据进行模式分析。在流感趋势这个例子,研究人员认为,执行独立搜索的患流感人群的模式会随着时间推移而异于社会化搜索。其表现应该是在流感爆发时搜索急剧攀升,然后随着流感消失而缓慢下降。相反,社会化搜索则会表现得更为匀称。数据表明,在 Google 流感趋势出现高估的时候,趋势曲线的对称性的确更高。
这说明在分析大数据时必须要注意此类陷阱。充斥的大数据集以及统计学家对分析结果的传播会令真实的数据被放大或弄脏。
正如《The Parable of Google Flu: Traps in Big Data Analysis》的作者所认为那样,数据的价值并不仅仅体现在其“大小”上。利用创新性数据分析方法去分析数据才是本质。
当然,在未来数据能够逐步成为真正的大数据,并且数字世界与实体世界的映射趋于一致时,大数据也许就能发挥其完全的威力,乃至于改变我们解决问题的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25