
2015年将面临的八大数据中心技术革新
2015年是新技术成熟的一年,IoE、混合云、大数据技术的逐渐商用使得数据中心的运行效率更高。
在2014的时候,市场在商业预算上有了新的发展,如云平台,大数据等新技术和先进的分析方法使得商业市场又找到了盈利点。
因此,2015将带来什么?下面有八个数据中心的技术的革新。
1.融合系统。根据需求自己定制的服务器。在IT分工越来越明细的今天,传统的大一统服务器系统已经不能适应所有的数据中心需求,可能有的数据中心需要高密集的并行运算,这样它们就需求扩展大量的GPU集成运算,传统的服务器显然并没有考虑这一点;有的数据中心主要是做数据储存的,这意味着什么,在诸如存储扩展方面有特别的需求的数据中心,可以自由搭配扩展更多储存的服务器,包括可扩展NAS等等。
2.网状结构网络。网状结构网络就是我们上一篇提到的现有东西和南北网络存在性能瓶颈,通过增加中间交换层来进行改善。大多数企业仍采用分层网络因为它支持用户在一个南北网络流量模式的网络来访问具体应用。网状结构网络这种扁平化的网络拓扑结构将改善东西和南北的通信。
3.闪存介质的存储。在数据中心的运算瓶颈里,往往不是CPU,内存或者网络速度,而是储存。储存性能改进的非常明显,其中最明显的是采用Flash介质的储存,这里面就包括SSD,SSHD,混合加速SAN等等技术。FLASH介质的储存是未来的发展趋势,虽然现阶段在容量和故障恢复方面相比传统的磁盘储存,FLASH有它自己的缺点,但是科技的进步是巨大的,很快FLASH储存将会大规模进入数据中心。
4.混合运算。不同的工作需要不同的资源,传统x86的计算能力在日益扩展的数据计算面前显得狭隘,CPU的运算已经不能满足大规模的单一并行运算。像Nvidia.AMD公司的图形处理单元GPUAPU,或Java卸载引擎,会部分替代CPU架构的运算工作,如并行编码,转码等等,这些效率比x86的CPU运算快上许多。
5.混合云技术。2015年估计是混合云技术大规模扩展的一年。混合云技术的灵活性可以将工作负载极大的提高。随着虚拟化和混合运算的普及,不同的厂家软硬件产品之间的选择性越来越大,混合云技术就是择其所需,包容扩展。在数据中心中,如何进行混合云技术的扩展将是未来发展的重点。
6.物联网(IOE)。随着数据量的迅速增长,家用设备或者任何其他设备都越来越智能化,甚至包括空调、洗衣机等设备。物联网将是这一切的基础智能化设备的一种升级应用,对于智能建筑,自动化车间,先进的跟踪和客户分析,物联网是至关重要的。
物联网将会采集海量的数据,这些大数据看起来很乱,但是对于商业大数据分析却是一种分析的基础,这也是物联网大规模扩展的一个因素。
7.能源的使用效率提高。从绿色节能的观点来看,可持续的能源和提高能源转化效率是每一个公司应该有的目标。
针对现代数据中心的冷却方法,使用尽可能少的能量。在非高密集运算的环境,服务器的处理器可以从性能比的角度去考虑使用低功耗的处理器, 这些处理器往往比相同等级型号的普通处理降低了50%的功耗,这对于服务器散热和提高性能比会有很大的帮助,同样的,在设备的电源等部件的选用角度,也需要加入能耗比的考虑。
8.与业务对齐。更好地了解什么样的商业将确保业务是否可行的和有效的。
从商业的角度来看,找出项目和目标的最大约束和建议将是决策的重要部分。随着世界的变化,业务已经被视为企业的核心部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19