
英专家:大数据时代“责任”为先
从新药开发到金融交易,从预判犯罪到超市营销,大数据正悄无声息地重塑各领域的业态与人们的生活方式。那么,我们应该赋予这个新时代怎样的特性?英国大数据专家舍恩伯格指出,“负责任”是其中应有之义。
维克托·迈尔-舍恩伯格是研究数据科学十余年的牛津大学教授,《大数据时代》一书作者。这本书被许多人认为是大数据研究的开先河之作,而舍恩伯格则被誉为“大数据商业应用第一人”。
舍恩伯格在演讲时总是活力十足、手势多变,喜欢举的例子也都“很酷很科幻”。不过,在牛津大学一间办公室里,舍恩伯格与新华社记者谈到他所期望的大数据未来,提到最多的,却是“责任”二字。
“大数据是一种工具,一种十分强大的工具。与其他科技工具一样,它可以被用于改善人们的生活,但也有被用以作恶的风险。”舍恩伯格说,也正因如此,在大数据时代,必须更加强调责任,对这一新技术进行“负责任的”开发和使用。
在海量数据的采集和分析中,是否会泄露被调查者或用户的隐私,走向数据高于人的“数据独裁”,是许多人担心的事情。对此,舍恩伯格认为,首先要建立各方之间的信任关系,没有信任,大数据的采集和应用不可持续。
为确立和保障这种信任关系,各参与方都需要采取行动。舍恩伯格说:“对于政府来说,最关键的是要进一步立法保护隐私,保护知识产权。”他认为,大数据发展快速,即便在欧洲、北美这类法律较健全、更新较快的地区,相关法律也已经过时,必须尽快完善以适应大数据时代。
而在有针对性的法律法规出台之前,政府或第三方监督也是必要选择。比如大数据的优势之一就是“一次采集、多次使用”,但如何保障这些数据的再利用符合数据采集初衷、符合规范,就需要有人来严格监督整个过程。
此外,舍恩伯格还强调,业界自律同样十分重要,“利用大数据技术创造利润的人必须明白,只有负责任地采集和使用数据,才有可能可持续地开发大数据价值,这一产业也才能持久发展”。
对于大数据发展面临的专业人才稀缺问题,这位牛津大学教授认为,教育领域需要适应大数据时代,培养具有大数据思维、掌握基本数据技术的学生。他说:“在未来,数据收集和处理将是一项基本技能。无论学习哪个专业、从业于何种领域,都将有必要掌握这一技能。”
舍恩伯格最后说,不管期待还是担忧,大数据时代都在向我们走来,“最重要的是,这个新时代还处于初始阶段,我们可以努力塑造其未来,把握其发展方向,让大数据真正为人们带来福利”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12