京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谁会成为2015年的“大数据巨人”
毫无疑问,大数据在2015年将变得更大。去年,各种各样的公司开始接触或使用大数据技术,并将其推入到主流技术中,今年你会看到更多这种趋势。许多科技巨头有望于今年提供新的大数据产品和服务,同时潮水般的初创企业也将未来12个月内因提供创新的大数据技术而冲上头版头条。我开始使用“大数据巨人”称呼那些在商业模式中建立起数据基础的大公司,2015年我们能从它们身上得到什么?
1.谷歌
谷歌将继续主导搜索领域,但2015年我们将看到其继续向我们日常生活中的其他领域扩张。2014年,谷歌收购了智能家居先锋Nest,后者也是智能恒温器的制造商。而Nest在获得谷歌支持后又收购了智能家居系统公司Revolv,后者打造“智能家居中心”,可连接和控制智能灯泡、安全摄像头以及自动门的许多家居用品。
谷歌的目的是提供现代智能家居的基础主干,而智能家居的概念有望在2015年成为现实。谷歌也有望推出其核心产品的儿童版本,包括利于儿童使用的搜索、Chrome以及Youtube等产品和服务,进一步将其提供的各种技术定位为日常家庭生活的一部分。
2.Facebook
尽管Facebook依然是世界上最大的社交网络,但在与Twitter和Instagram的竞争中,Facebook却依然在丧师失地,特别是在年轻用户群体中。可是,Facebook去年出人意料的一次收购却显示出其正将网络通信的概念引领向一个全新的方向。
今年年初,消费者最终有望买到Oculus Rift虚拟现实头盔。尽管这款头盔最初主要针对游戏玩家,但Facebook首席执行官马克·扎克伯格(Mark Zuckerberg)明确表示,Facebook将承担起建立虚拟世界的任务,任何人都可以去探索虚拟数据,并与如山的数据互动。2015年,我们很可能看到这样的虚拟世界开始形成。
3.微软
微软一直致力于将数据分析推向主流,而随着其基于云技术打造的分析工具PowerBI不断升级,微软的努力将于2015年开始收获硕果。微软2013年即推出PowerBI,目的旨在向热门Office套件提供分析功能。微软一直希望具有新的功能,比如专门的iPad应用来分析移动数据能力、仪表盘分析能力、直接与SQL数据库对话的能力等,这些功能将促使各种规模的企业使用PowerBI。
4.惠普
与大数据服务供应商亚马逊以及IBM等一样,惠普也开发出自己的大数据分析平台Haven,可安全通过云技术使用。这意味着,从储存、分析到报告等过程,都可以交给惠普来完成,用户可以节省每月的订阅费用,甚至完全免除建设基础设施的费用。这消除了许多公司实行大数据战略的障碍,也大大降低了入门门槛。惠普的Haven与亚马逊的Redshift和IBM的DashDB展开竞争后,将导致大数据分析的订阅成本降低,使用分析技术提高效率的企业数量也大大增加。
5.IBM
IBM的Watson Analytics刚刚开始面向公众,这代表数据分析向日常主流迈出了一大步。但它的名字让人感到困惑,因为它也是IBM人工智能算法的名字。它曾于2011年在美国智力游戏《危险境地》(Jeopardy)中,击败了两位最优秀的人类选手肯·詹宁斯(Ken Jennings)和布拉德·鲁特(Brad Rutter),并促使詹宁斯宣称“欢迎我们的新电脑霸主!”
这是因为它使用了很多专为Watson Analytics开发的技术,用以支持其自然语言处理能力。这意味着,Watson Analytics可以使用流利的英语解释输入的查询。它既可以提供免费在线网络服务,也可提供特别订阅的企业服务,以便提供更大数量的数据分析服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22