
谁会成为2015年的“大数据巨人”
毫无疑问,大数据在2015年将变得更大。去年,各种各样的公司开始接触或使用大数据技术,并将其推入到主流技术中,今年你会看到更多这种趋势。许多科技巨头有望于今年提供新的大数据产品和服务,同时潮水般的初创企业也将未来12个月内因提供创新的大数据技术而冲上头版头条。我开始使用“大数据巨人”称呼那些在商业模式中建立起数据基础的大公司,2015年我们能从它们身上得到什么?
1.谷歌
谷歌将继续主导搜索领域,但2015年我们将看到其继续向我们日常生活中的其他领域扩张。2014年,谷歌收购了智能家居先锋Nest,后者也是智能恒温器的制造商。而Nest在获得谷歌支持后又收购了智能家居系统公司Revolv,后者打造“智能家居中心”,可连接和控制智能灯泡、安全摄像头以及自动门的许多家居用品。
谷歌的目的是提供现代智能家居的基础主干,而智能家居的概念有望在2015年成为现实。谷歌也有望推出其核心产品的儿童版本,包括利于儿童使用的搜索、Chrome以及Youtube等产品和服务,进一步将其提供的各种技术定位为日常家庭生活的一部分。
2.Facebook
尽管Facebook依然是世界上最大的社交网络,但在与Twitter和Instagram的竞争中,Facebook却依然在丧师失地,特别是在年轻用户群体中。可是,Facebook去年出人意料的一次收购却显示出其正将网络通信的概念引领向一个全新的方向。
今年年初,消费者最终有望买到Oculus Rift虚拟现实头盔。尽管这款头盔最初主要针对游戏玩家,但Facebook首席执行官马克·扎克伯格(Mark Zuckerberg)明确表示,Facebook将承担起建立虚拟世界的任务,任何人都可以去探索虚拟数据,并与如山的数据互动。2015年,我们很可能看到这样的虚拟世界开始形成。
3.微软
微软一直致力于将数据分析推向主流,而随着其基于云技术打造的分析工具PowerBI不断升级,微软的努力将于2015年开始收获硕果。微软2013年即推出PowerBI,目的旨在向热门Office套件提供分析功能。微软一直希望具有新的功能,比如专门的iPad应用来分析移动数据能力、仪表盘分析能力、直接与SQL数据库对话的能力等,这些功能将促使各种规模的企业使用PowerBI。
4.惠普
与大数据服务供应商亚马逊以及IBM等一样,惠普也开发出自己的大数据分析平台Haven,可安全通过云技术使用。这意味着,从储存、分析到报告等过程,都可以交给惠普来完成,用户可以节省每月的订阅费用,甚至完全免除建设基础设施的费用。这消除了许多公司实行大数据战略的障碍,也大大降低了入门门槛。惠普的Haven与亚马逊的Redshift和IBM的DashDB展开竞争后,将导致大数据分析的订阅成本降低,使用分析技术提高效率的企业数量也大大增加。
5.IBM
IBM的Watson Analytics刚刚开始面向公众,这代表数据分析向日常主流迈出了一大步。但它的名字让人感到困惑,因为它也是IBM人工智能算法的名字。它曾于2011年在美国智力游戏《危险境地》(Jeopardy)中,击败了两位最优秀的人类选手肯·詹宁斯(Ken Jennings)和布拉德·鲁特(Brad Rutter),并促使詹宁斯宣称“欢迎我们的新电脑霸主!”
这是因为它使用了很多专为Watson Analytics开发的技术,用以支持其自然语言处理能力。这意味着,Watson Analytics可以使用流利的英语解释输入的查询。它既可以提供免费在线网络服务,也可提供特别订阅的企业服务,以便提供更大数量的数据分析服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04