
商务智能最大的挑战不是来自大数据
要想从商务智能中获取最大的价值,就需要强大的数据治理能力,这往往从数据定义开始。
IT咨询师Wayne Eckerson说到,诚然,我们处在大数据时代,但从我接触的客户来看,大公司面临的主要挑战是缺乏通用的数据词汇。一个组织就像是毁掉了的巴别塔,各说各的语言,出于不同的目的,数据和性能指标都不一致,定义也不清晰。IT部门和业务单位各说各话,严重影响了运营效率和竞争力。这里面缺少的就是强有力的数据治理项目,把数据作为重要的业务资产来管理。
最大的挑战不是来自大数据
我的客户都是在数据仓库、商务智能和主数据管理等领域有实质投资的数据驱动型公司。但和大家想象的大数据现象不同,困扰很多公司的仍然是小数据,即来自企业资源计划ERP、客户关系管理CRM和其他运行的业务系统的信息。
问题是这些信息碎片化地分散在组织中,每一个业务单位或地域公司都运行、管理着自己的应用程序、系统和客户数据库。虽然独立运行的系统可以帮助业务部门推送个性化的产品和服务给客户,但它会削弱全球数据的完整性、一致性和公司整合资源的能力。最终会影响企业在更广泛的市场的竞争力。
因此,组织应该努力优化本地和全球的流程。这包括建立全球数据标准,给共享数据和流程给出完整的定义,从而更好地管理它们。这要求来自业务部门的销售人员付出时间,与同事合作,共同创造通用的词汇和数据治理框架。
如果处理得当,数据标准既不会限制业务部门,也不会影响服务客户。相反,有良好治理的数据标准能够在业务部门中培养更大的协作。这对想和企业合作的客户来说,是个好消息,长远来看,也是对业务部门有益的。
重建巴别塔的两种方式
当然,要创建通用的数据词汇谈何容易!通常,部署数据治理项目需要两种常用方法,一个是由CEO或其他领导推动的自上而下的行政行为,一个是包含IT项目的自下而上的部署。
通常,在没有统一的数据标准的大公司,缺乏一致的数据会给CEO带来很大的难题,公司甚至无法回答一些最基本的问题,比如“我们昨天的销售业绩是多少?”“我们有多少客户?”或“为什么我们产品的召回率那么高?”CEO,或其他公司领导,会推动数据治理项目,创建和管理数据词汇,并在所有运营系统、BI报表和分析应用程序里推广使用。理想情况下,公司的每一个部门都会推行该项目。
但是,CEO往往会选择走捷径。他们希望一条命令就足以改变整个公司的数据资产管理。因此,他们没有投入变化管理流程,业务部门经理没有机会在项目形态和数据标准本身进行投入。没有中层管理者的足够的支持,数据治理项目很难落地。
自下而上的方法把数据治理程序嵌入到技术项目中,比如部署新的CRM,合规性报表或风险管理系统。通过借力于战略性项目,数据治理建议者能够建立起对精确数据定义和跨业务部门的标准化数据管理流程的支持,最终获得CEO的认可和支持。
例如,我的一个客户是全球医疗设备制造商,它的CEO想要一个绩效记分系统帮助他更好地管理公司,该系统需要很多自动化业务单元,有些还是独立的法人实体。CEO没有直接下达行政命令。但在创建记分系统的过程中,设计团队开发了一个非正式的治理项目,在记分系统指标和潜在的业务名词中获得一致性。团队不得不找到公司每个部门的决策制定者——销售部门、财务部门、人力资源部门等,让他们确定定义、过滤方法和访问权限和数据质量标准。现在,他们不得不监督流程,监控数据质量,管理指标变化。
这个团队现在意识到,记分系统真正的目的和首要的利益不是给CEO提供报表和数据,而是创建通用的词汇,让公司能够在全球业务中使用。公司特别需要通用的数据词汇来和进入市场的更大、集成更好的公司竞争。
要想提高成功的概率,企业需要权衡这两种方法。自下而上的方法如果没有清理数据和保持一致性的行政命令的话,不可能成功。自上而下的方法应该和其他项目联系在一起,通过聚焦数据元素进行部署,让每一个人都认可这件事对企业的价值(或者是对自己的价值)。
只是,一定不要让现状持续下去。现在,数据治理,而不是大数据,是定义数据管理的挑战。成为数据驱动的公司是一件事,对共享术语和指标有通用数据词汇是另一件事。但在今天的信息经济时代,这两者都是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09