京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商务智能最大的挑战不是来自大数据
要想从商务智能中获取最大的价值,就需要强大的数据治理能力,这往往从数据定义开始。
IT咨询师Wayne Eckerson说到,诚然,我们处在大数据时代,但从我接触的客户来看,大公司面临的主要挑战是缺乏通用的数据词汇。一个组织就像是毁掉了的巴别塔,各说各的语言,出于不同的目的,数据和性能指标都不一致,定义也不清晰。IT部门和业务单位各说各话,严重影响了运营效率和竞争力。这里面缺少的就是强有力的数据治理项目,把数据作为重要的业务资产来管理。
最大的挑战不是来自大数据
我的客户都是在数据仓库、商务智能和主数据管理等领域有实质投资的数据驱动型公司。但和大家想象的大数据现象不同,困扰很多公司的仍然是小数据,即来自企业资源计划ERP、客户关系管理CRM和其他运行的业务系统的信息。
问题是这些信息碎片化地分散在组织中,每一个业务单位或地域公司都运行、管理着自己的应用程序、系统和客户数据库。虽然独立运行的系统可以帮助业务部门推送个性化的产品和服务给客户,但它会削弱全球数据的完整性、一致性和公司整合资源的能力。最终会影响企业在更广泛的市场的竞争力。
因此,组织应该努力优化本地和全球的流程。这包括建立全球数据标准,给共享数据和流程给出完整的定义,从而更好地管理它们。这要求来自业务部门的销售人员付出时间,与同事合作,共同创造通用的词汇和数据治理框架。
如果处理得当,数据标准既不会限制业务部门,也不会影响服务客户。相反,有良好治理的数据标准能够在业务部门中培养更大的协作。这对想和企业合作的客户来说,是个好消息,长远来看,也是对业务部门有益的。
重建巴别塔的两种方式
当然,要创建通用的数据词汇谈何容易!通常,部署数据治理项目需要两种常用方法,一个是由CEO或其他领导推动的自上而下的行政行为,一个是包含IT项目的自下而上的部署。
通常,在没有统一的数据标准的大公司,缺乏一致的数据会给CEO带来很大的难题,公司甚至无法回答一些最基本的问题,比如“我们昨天的销售业绩是多少?”“我们有多少客户?”或“为什么我们产品的召回率那么高?”CEO,或其他公司领导,会推动数据治理项目,创建和管理数据词汇,并在所有运营系统、BI报表和分析应用程序里推广使用。理想情况下,公司的每一个部门都会推行该项目。
但是,CEO往往会选择走捷径。他们希望一条命令就足以改变整个公司的数据资产管理。因此,他们没有投入变化管理流程,业务部门经理没有机会在项目形态和数据标准本身进行投入。没有中层管理者的足够的支持,数据治理项目很难落地。
自下而上的方法把数据治理程序嵌入到技术项目中,比如部署新的CRM,合规性报表或风险管理系统。通过借力于战略性项目,数据治理建议者能够建立起对精确数据定义和跨业务部门的标准化数据管理流程的支持,最终获得CEO的认可和支持。
例如,我的一个客户是全球医疗设备制造商,它的CEO想要一个绩效记分系统帮助他更好地管理公司,该系统需要很多自动化业务单元,有些还是独立的法人实体。CEO没有直接下达行政命令。但在创建记分系统的过程中,设计团队开发了一个非正式的治理项目,在记分系统指标和潜在的业务名词中获得一致性。团队不得不找到公司每个部门的决策制定者——销售部门、财务部门、人力资源部门等,让他们确定定义、过滤方法和访问权限和数据质量标准。现在,他们不得不监督流程,监控数据质量,管理指标变化。
这个团队现在意识到,记分系统真正的目的和首要的利益不是给CEO提供报表和数据,而是创建通用的词汇,让公司能够在全球业务中使用。公司特别需要通用的数据词汇来和进入市场的更大、集成更好的公司竞争。
要想提高成功的概率,企业需要权衡这两种方法。自下而上的方法如果没有清理数据和保持一致性的行政命令的话,不可能成功。自上而下的方法应该和其他项目联系在一起,通过聚焦数据元素进行部署,让每一个人都认可这件事对企业的价值(或者是对自己的价值)。
只是,一定不要让现状持续下去。现在,数据治理,而不是大数据,是定义数据管理的挑战。成为数据驱动的公司是一件事,对共享术语和指标有通用数据词汇是另一件事。但在今天的信息经济时代,这两者都是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05