京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商务智能最大的挑战不是来自大数据
要想从商务智能中获取最大的价值,就需要强大的数据治理能力,这往往从数据定义开始。
IT咨询师Wayne Eckerson说到,诚然,我们处在大数据时代,但从我接触的客户来看,大公司面临的主要挑战是缺乏通用的数据词汇。一个组织就像是毁掉了的巴别塔,各说各的语言,出于不同的目的,数据和性能指标都不一致,定义也不清晰。IT部门和业务单位各说各话,严重影响了运营效率和竞争力。这里面缺少的就是强有力的数据治理项目,把数据作为重要的业务资产来管理。
最大的挑战不是来自大数据
我的客户都是在数据仓库、商务智能和主数据管理等领域有实质投资的数据驱动型公司。但和大家想象的大数据现象不同,困扰很多公司的仍然是小数据,即来自企业资源计划ERP、客户关系管理CRM和其他运行的业务系统的信息。
问题是这些信息碎片化地分散在组织中,每一个业务单位或地域公司都运行、管理着自己的应用程序、系统和客户数据库。虽然独立运行的系统可以帮助业务部门推送个性化的产品和服务给客户,但它会削弱全球数据的完整性、一致性和公司整合资源的能力。最终会影响企业在更广泛的市场的竞争力。
因此,组织应该努力优化本地和全球的流程。这包括建立全球数据标准,给共享数据和流程给出完整的定义,从而更好地管理它们。这要求来自业务部门的销售人员付出时间,与同事合作,共同创造通用的词汇和数据治理框架。
如果处理得当,数据标准既不会限制业务部门,也不会影响服务客户。相反,有良好治理的数据标准能够在业务部门中培养更大的协作。这对想和企业合作的客户来说,是个好消息,长远来看,也是对业务部门有益的。
重建巴别塔的两种方式
当然,要创建通用的数据词汇谈何容易!通常,部署数据治理项目需要两种常用方法,一个是由CEO或其他领导推动的自上而下的行政行为,一个是包含IT项目的自下而上的部署。
通常,在没有统一的数据标准的大公司,缺乏一致的数据会给CEO带来很大的难题,公司甚至无法回答一些最基本的问题,比如“我们昨天的销售业绩是多少?”“我们有多少客户?”或“为什么我们产品的召回率那么高?”CEO,或其他公司领导,会推动数据治理项目,创建和管理数据词汇,并在所有运营系统、BI报表和分析应用程序里推广使用。理想情况下,公司的每一个部门都会推行该项目。
但是,CEO往往会选择走捷径。他们希望一条命令就足以改变整个公司的数据资产管理。因此,他们没有投入变化管理流程,业务部门经理没有机会在项目形态和数据标准本身进行投入。没有中层管理者的足够的支持,数据治理项目很难落地。
自下而上的方法把数据治理程序嵌入到技术项目中,比如部署新的CRM,合规性报表或风险管理系统。通过借力于战略性项目,数据治理建议者能够建立起对精确数据定义和跨业务部门的标准化数据管理流程的支持,最终获得CEO的认可和支持。
例如,我的一个客户是全球医疗设备制造商,它的CEO想要一个绩效记分系统帮助他更好地管理公司,该系统需要很多自动化业务单元,有些还是独立的法人实体。CEO没有直接下达行政命令。但在创建记分系统的过程中,设计团队开发了一个非正式的治理项目,在记分系统指标和潜在的业务名词中获得一致性。团队不得不找到公司每个部门的决策制定者——销售部门、财务部门、人力资源部门等,让他们确定定义、过滤方法和访问权限和数据质量标准。现在,他们不得不监督流程,监控数据质量,管理指标变化。
这个团队现在意识到,记分系统真正的目的和首要的利益不是给CEO提供报表和数据,而是创建通用的词汇,让公司能够在全球业务中使用。公司特别需要通用的数据词汇来和进入市场的更大、集成更好的公司竞争。
要想提高成功的概率,企业需要权衡这两种方法。自下而上的方法如果没有清理数据和保持一致性的行政命令的话,不可能成功。自上而下的方法应该和其他项目联系在一起,通过聚焦数据元素进行部署,让每一个人都认可这件事对企业的价值(或者是对自己的价值)。
只是,一定不要让现状持续下去。现在,数据治理,而不是大数据,是定义数据管理的挑战。成为数据驱动的公司是一件事,对共享术语和指标有通用数据词汇是另一件事。但在今天的信息经济时代,这两者都是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23