
2015年大数据趋势:可视化移动分析技术
2014年是大数据之盛年。在这一年,这个术语风行科技界,被越来越多的人所熟悉。而在2015年,我相信“大数据”将与“物联网”一起成为互联网和移动互联网的核心话题。
越来越多的公司将受益于对大数据的深入分析,而这更将成为科技企业的标准化流程之一。
未来几年内,全球移动互联网用户将持续增长,至2016年,61%互联网流量将来自无线设备,进一步推动大数据的成长。
大数据催生的挑战
据IDC数据显示,在2015年,大数据市场规模将从2010年的32亿美元增长至169亿美元。2013-2014年,人类行为产生的数据量超过过去多年的总和,且受物联网推动,未来将继续以翻倍的速度增长。
很显然,数据分析师们无法应对统计信息和数据的大量涌入,而机器(分析)的弊端则在于,它无法提炼数据的真正价值,推导出具有逻辑性的结论。如果企业无法解析成堆数据,数据就成了无用之物——搜集到的所有信息如同进入休眠状态,不可能对企业产生积极影响。
因此,我们面临的挑战是:如何让所有信息变得有意义。
变革分析数据的方式
技术人员、统计人员和企业……大家都在谈论这个问题,却很少有人提出解决方案。
某些公司尝试打造软件解决方案,虽然表面上软件分析能够解决问题,但一旦数据量突然激增,这种模式将失效。企业成长依赖于数据,但处理数据对人类来说任务过于繁重,交给机器处理却又有可能无法实现其最大价值。
真正的变革,在于改变数据分析的流程。CrazyEgg和Inspectlet等公司已经在互联网端提供可视化数据分析解决方案,但有鉴于移动互联网流量已经超过互联网,数据分析的未来将系于可视化移动分析。
传统的移动分析工具,例如Google Analytics强调数据的内容,提供用户数量、所使用操作系统,用户地理位置分布等关键指标,但它们却不关注“为什么”,而后者本应是数据分析的原因所在。
举个例子来说,较低用户留存率乃一目了然的简单数据,但我们并不清楚的是,为什么用户不愿意重返一款移动应用?目前,已经有可视化移动分析工具能够绘制可视化报告,让开发者能够深入观察用户体验和行为,从而发现问题所在。而下一代可视化移动分析工具,则不单有能力动见问题,还能够为开发者提供可执行的解决方案。
如果企业希望寻找一种方式,简化耗时的数据分析流程,以达到优化应用的目标,不妨考虑借助可视化移动分析工具的力量。
有洞察力的可视化移动分析工具
可视化移动数据分析工具能够追踪用户行为,让应用开发者得以从用户角度评估自己的产品,而这正是其最具价值的功能之一。通过观察用户与一款应用的互动方式,开发者将能够理解用户为何执行某些特定行为,从而为自己完善和改进应用提供依据。
在下图中,从弹出消息你会看到一名用户尝试创建Facebook账号,却由于技术问题遇到了麻烦。传统分析工具只会告诉你用户流失率高,却不会告诉你原因,而像这样的“用户记录”,则能够在一定程度上解释用户离开应用的原因,提示开发者制定应对方案。
视觉触摸热图(visual touch heatmaps)是另一项有用的功能。热图可以记录用户的所有手势,包括点击、划屏和捏屏等,从而让开发者能够更好地理解用户行为,知道用户对自己应用内的哪些内容最感兴趣。
下图展示了用户重返应用的登陆页面。通过视觉触摸热图,我们发现,用户多次向右划屏,却没有得到任何响应。而这意味着,这款应用并不支持用户向右划屏的动作。基于这些观察,该应用开发者意识到,很多用户希望跳过这个登陆页面,却无济于事。这让很多用户感到沮丧,很可能是用户放弃这款应用的重要原因之一。由此,开发者可以有针对性对应用进行修改,改善用户体验。
移动互联网不仅仅是一个趋势。越来越多的企业开始意识到它潜力巨大,并将大量资金投入其中。若想保持竞争力,企业需要专注于移动互联网及下一代数据分析技术,更有的放矢地改善应用的用户体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07