
虽然帝都承办了 2008 年奥运会,天朝国民也为此盛事狂欢,但除了金牌数字让人血脉偾张以外,日常体育锻炼和健身还离大多数国人很远。而即使近几年有不少健身房在生活小区周边建立起来,也往往因为上班族时间资源的稀缺以及空间距离带来的不便而让人在办卡后无法形成持续的运动健身习惯。
不过好消息是,随着手机、平板等移动设备因其便携性而成为人体不可或缺的一部分,好的健身内容也可以被装进“口袋”、随身携带,降低了人们持续消费健身内容的门槛,从而有助于形成良好的运动习惯——而线上健身平台“沸腾时刻”想做的就是这样一件事。
简单来说,“沸腾时刻”想通过收集用户身体的数据,用算法为其设计个性化的视频健身课程,替代传统的线下“私教”。
初次使用沸腾时刻时,用户需要手动输入自己的身高、体重、腰围、臀围等信息,让系统对其身材有个基础的判断和了解。但仅有这些数据还不足够系统精准判断,所以采集了基础数据后,沸腾时刻还会要求用户跟着视频完成“体测”环节,以判断用户体能适合从何种强度的训练开始做起。
说到这里,有人可能会好奇:纯线上的视频播放方式,如何得知用户线下“体测”的成绩呢?这正是沸腾时刻很有意思的一点——它会为用户提供可交互的视频课程,让用户跟着视频中的教练完成一系列动作,比如“做 30 秒的高抬腿”,当高抬腿的教学视频播放完后,视频便会暂停并弹出一个表单,让用户填写他在 30 秒内可以完成的高抬腿动作的个数——通过这类数据的收集,系统便可以判断出用户的体能大概在什么样的水平。
当然,这类交互不仅仅限于体能测试的环节,在用户后续的健身过程中,为其配套的健身视频都会不断采取这种交互方式来收集用户的运动数据,以跟踪其锻炼效果,并优化后续为其推送的视频健身课程,让用户可以循序渐进地达到健身目标。这也就是之前所说的,用数据+算法去替代掉原来线下的私教所做的事。
不过,用纯粹的线上方式来做健身教学,除了数据收集这一弱点以外,还有对用户把控较弱的缺点——就像 Coursera 上的视频课程一样,用户辍学的门槛极低,也没有线下的同学和老师氛围来让用户对辍学形成负罪感,而类似的沸腾时刻也极可能面临同样问题。
针对这一点,沸腾时刻的创始人 Rocky 说,通常健身坚持不下去最大的问题就是线下去健身房的不方便性,而他们已经用线上可交互健身视频的方式去减少原来的不便捷性了。除此之外,还可能让人坚持不下去的因素就是视频内容不够丰富,每天练习的都是几乎一样内容,便很容易失去乐趣(曾经跟着视频跳过郑多燕的菇凉们应该深有感触)。
对此,沸腾时刻的做法是,他们在线下和有名的私教合作录制视频课程,目前已经有成百集的内容,可以让用户每天都有不一样的健身视频观看,且这些视频都是个性化定制、符合用户身体需求的。而健身这件事,只要用户能坚持 30 到 60 天,便可以看到自己身材的巨大改变,尝到这个甜头之后用户自然会对健身产生黏性了。
盈利模式上,沸腾时刻现阶段采取初级视频课程免费,高级会员按年卡收费的模式。付费的高级会员可以购买沸腾时刻提供的可穿戴设备(让收集到的用户数据更加精准),并免费到线下健身房进行锻炼(有点类似ClassPass整进散出的模式)。不过 Rocky 认为,和为线下私教导流的方式并不是长期的,他们认为最有价值的还是积累下来的用户健康大数据,未来可以将收集到的用户健康大数据开放给各类厂商进行合作。
团队上,沸腾时刻创始人 Rocky 从美国伊利诺伊大学 MBA 毕业后回国创业,在大学时曾是 CUBA 冠军校队的成员,在中美健身届都积累下了一些资源,因而可以以较低的成本和前央视的节目团队以及国内外的健身、健美冠军教练合作拍摄视频,这也算是其创业的早期优势之一。目前沸腾时刻已经上线试运营一年,最近进行了全新改版,而其 app 也会在近日推出。团队也已拿到琴江创投千万人民币级别的天使投资。
至于类似的产品,国外和沸腾时刻在线上或是线下有些相同之处的公司有FitStar、Fitmob,国内有“我开始”等。而从 2014 年起,从 P2P 角度、线下健身房整合角度、私教角度等等方向切入的各类围绕运动健康服务也不断涌现,比如练练、开练、约教练等,估计 2015 年还会有更多玩家涌现,我们会持续保持关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26