京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虽然帝都承办了 2008 年奥运会,天朝国民也为此盛事狂欢,但除了金牌数字让人血脉偾张以外,日常体育锻炼和健身还离大多数国人很远。而即使近几年有不少健身房在生活小区周边建立起来,也往往因为上班族时间资源的稀缺以及空间距离带来的不便而让人在办卡后无法形成持续的运动健身习惯。
不过好消息是,随着手机、平板等移动设备因其便携性而成为人体不可或缺的一部分,好的健身内容也可以被装进“口袋”、随身携带,降低了人们持续消费健身内容的门槛,从而有助于形成良好的运动习惯——而线上健身平台“沸腾时刻”想做的就是这样一件事。
简单来说,“沸腾时刻”想通过收集用户身体的数据,用算法为其设计个性化的视频健身课程,替代传统的线下“私教”。
初次使用沸腾时刻时,用户需要手动输入自己的身高、体重、腰围、臀围等信息,让系统对其身材有个基础的判断和了解。但仅有这些数据还不足够系统精准判断,所以采集了基础数据后,沸腾时刻还会要求用户跟着视频完成“体测”环节,以判断用户体能适合从何种强度的训练开始做起。
说到这里,有人可能会好奇:纯线上的视频播放方式,如何得知用户线下“体测”的成绩呢?这正是沸腾时刻很有意思的一点——它会为用户提供可交互的视频课程,让用户跟着视频中的教练完成一系列动作,比如“做 30 秒的高抬腿”,当高抬腿的教学视频播放完后,视频便会暂停并弹出一个表单,让用户填写他在 30 秒内可以完成的高抬腿动作的个数——通过这类数据的收集,系统便可以判断出用户的体能大概在什么样的水平。
当然,这类交互不仅仅限于体能测试的环节,在用户后续的健身过程中,为其配套的健身视频都会不断采取这种交互方式来收集用户的运动数据,以跟踪其锻炼效果,并优化后续为其推送的视频健身课程,让用户可以循序渐进地达到健身目标。这也就是之前所说的,用数据+算法去替代掉原来线下的私教所做的事。
不过,用纯粹的线上方式来做健身教学,除了数据收集这一弱点以外,还有对用户把控较弱的缺点——就像 Coursera 上的视频课程一样,用户辍学的门槛极低,也没有线下的同学和老师氛围来让用户对辍学形成负罪感,而类似的沸腾时刻也极可能面临同样问题。
针对这一点,沸腾时刻的创始人 Rocky 说,通常健身坚持不下去最大的问题就是线下去健身房的不方便性,而他们已经用线上可交互健身视频的方式去减少原来的不便捷性了。除此之外,还可能让人坚持不下去的因素就是视频内容不够丰富,每天练习的都是几乎一样内容,便很容易失去乐趣(曾经跟着视频跳过郑多燕的菇凉们应该深有感触)。
对此,沸腾时刻的做法是,他们在线下和有名的私教合作录制视频课程,目前已经有成百集的内容,可以让用户每天都有不一样的健身视频观看,且这些视频都是个性化定制、符合用户身体需求的。而健身这件事,只要用户能坚持 30 到 60 天,便可以看到自己身材的巨大改变,尝到这个甜头之后用户自然会对健身产生黏性了。
盈利模式上,沸腾时刻现阶段采取初级视频课程免费,高级会员按年卡收费的模式。付费的高级会员可以购买沸腾时刻提供的可穿戴设备(让收集到的用户数据更加精准),并免费到线下健身房进行锻炼(有点类似ClassPass整进散出的模式)。不过 Rocky 认为,和为线下私教导流的方式并不是长期的,他们认为最有价值的还是积累下来的用户健康大数据,未来可以将收集到的用户健康大数据开放给各类厂商进行合作。
团队上,沸腾时刻创始人 Rocky 从美国伊利诺伊大学 MBA 毕业后回国创业,在大学时曾是 CUBA 冠军校队的成员,在中美健身届都积累下了一些资源,因而可以以较低的成本和前央视的节目团队以及国内外的健身、健美冠军教练合作拍摄视频,这也算是其创业的早期优势之一。目前沸腾时刻已经上线试运营一年,最近进行了全新改版,而其 app 也会在近日推出。团队也已拿到琴江创投千万人民币级别的天使投资。
至于类似的产品,国外和沸腾时刻在线上或是线下有些相同之处的公司有FitStar、Fitmob,国内有“我开始”等。而从 2014 年起,从 P2P 角度、线下健身房整合角度、私教角度等等方向切入的各类围绕运动健康服务也不断涌现,比如练练、开练、约教练等,估计 2015 年还会有更多玩家涌现,我们会持续保持关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07