
大数据的难解悖论:隐私与货币化何以两全?
人生的乐趣在于不确定性。如果大数据作为一种技术,(数据分析师)在未来统治了人们的工作和生活,那么我们每个人将都是赤身裸体的连皮肤可能都要是失去了!我们将进入一个确定的、可预测的世界。这是我在昨天参加完百度BIG Talk第三期《大数据开启大未来》的科技对话活动之后,最为直接的想法。来自美国的彭特兰教授是这次对话的灵魂人物,此君名声在外,不只是因为他自己自 身是MIT媒体实验室的负责人,在大数据领域属于一流的学者,他的学生也都是人中翘楚,其中就包括谷歌眼镜的发明人。
去之前,稍微做了点功课。因为我始终对大数据技术那种宣称的无所不能持有怀疑和谨慎的态度。因为我认为过度的技术浸入人类的生活和工作,并非完全利 好。尤其可穿戴产品,人类的所思所想所行,都变得越来越透明。以至于很多商人在欢呼,传统的消费者行为学理论终于可以寿终正寝,在他们看来,作为消费者的 我们不再是黑盒子。
因此,我比较关注彭特兰教授有关隐私方面的演讲。因为在大数据统治的数字化社会,我并不认为做一名数字透明化的顾客会是多么幸福的事情。
彭特兰教授在演讲中提到的一个观点,我认为值得整个社会深思,他说我们不应该把个人的数据交给一个以盈利为目的的商业公司。在彭特兰教授的观点中,他认为作为个人而言,在大数据时代,应该具有四种权力:
1)被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集
2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意
3)审核:在这里主要是指政府法律机构负责审核
4)撤销权:个人随时可以销毁自己的个人数据资产。
通俗的说,就是彭特兰教授称之为“数据上的新决议”三原则:你有权利拥有你的数据、你有权利掌握数据的使用、你有权利摧毁或者贡献你的数据。
所以在他的解决方案中,他提出了一个可信网络的概念,借用的是SWIFT(环球银行电信协会)在全球银行间建设的银行间通信和实时清算系统。同时, 他还提出了一个“开放个人数据商店”的模型,"数据分析师"在这个模型中,这是一个唯一的存储个人数据的地方,在面对外部访问请求的时候,给出的最终答案,而不是数据本 身。
当然,运营和管理这样的一个个人数据商店,并非简单和容易的事情,尤其是在全世界范围内统一起来更是几无可能。在这里面既涉及到各国政府管理和服务 本国公民的问题,也涉及到全球的国际公司巨头们的巨大商业利益问题。所以笔者对彭特兰教授的这个开放个人数据商店能否真正解决个人的数据隐私保护持有保留态度。
教授的理想是个人的数据资产不能交给商业公司。
但是冷酷的现实则是,除了商业公司对我们的个人数据资产抱有浓厚的兴趣之外,恐怕很难找到一个跳出五行外不在佛门中的人和机构,对此持有持续的兴趣和动力。(当然,政府机构也对此抱有极强的兴趣,但是那是另外一回事)
所以对于个人而言,更为现实的问题,则是如何合理的货币化自己的个人数据资产的问题。这一点,彭特兰教授在演讲中,也有提及。他指出,建立一种机制,鼓励人们分享和贡献数据,既能给自己,也能给他人和整个社会带来好处。
对此,我深表同意。比如如果每个司机人都愿意实时的分享自己驾驶车辆的速度、位置、刹车、加速的情况,这样整个城市的路网,都实现了动态的监控和运营,或许对于改善所有司机的出行效率都有好处。
但是重要的问题是,要有足够的经济激励,刺激个人在信任安全可靠的前提下,有意愿分享自己的数据。显然,有机构或者组织愿意直接出资购买个人的这些数据是一种最为直接的商业模式,但是在现实生活中,第三方付费的模式则更为普遍。
不过有次带来的新问题则是,如果人们知道自己的数据能够给自己带来收益,则可能会影响其有意识的偏离正常的行为模式,从而使得数据的真实性又产生新的问题。这一点,其实在目前互联网世界中,第三方付费的商业模式中,案例比比皆是,虚假繁荣的数据由利益而生。
不过,有激励的机制,显然整体绩效要高于没有激励的机制,这一点,我认为是大数据时代,如果向获得完整和真实的数据,所必须考虑的一点。
目前来了,大数据的出现还主要是为了提高生产力,提高营销的效果,改善我们的交通、环境、健康、城市的境况。但是随着生物科技、信息通信技术的发 展,物联网、互联网的融合发展,我们的世界或许将不可避免的进入一个“全数据化”的世界——在这样的世界,任何不可数据化的东西,都将与不存在一样。
在这样的世界,将是由大数据统治的世界,每一个人都是一串二进制编码,透明而简单,一切都是确定的,都是可预测的,都是按部就班的,你喜欢吗?反正我不喜欢,没有不确定性的人生能有多大意思呢?数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01