京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是很火,但关键要“活”起来
鉴于大数据在IT圈内近乎拽上天的地位,笔者最近一直在阅读学习《大数据时代》,据说这本书能带来生活、工作与思维的大变革。《大数据时代》有个核心观点是大数据依赖的是相关关系,而不是因果关系。它告诉你的是会发生什么,而不是为什么发生。而笔者也想借维克托之口通过本文告诉外界,我们终将会进入一场轰轰烈烈的大数据时代。至于为什么会发生,笔者也想补充一点说,在这个讲究“连接”的世界,抛却那些技术盲,没有人会逃出数字化世界的魔咒。
本文中,笔者想将这个热火的三个字带引到移动大健康领域,探讨大数据对这个符合人性“长命百岁”领域的可借鉴与启迪意义。
核心:大数据的最大本事在于预测
很多人都在聊大数据,其实根本不了解为何身边人聊它。难道你认为,跟着奥巴马聊大数据的国家战略只是很潮么?笔者觉得,大数据的最大本事在于能在问题发生前预测性地给出答案。维克托·迈尔·舍恩伯格用“黑匣子”表述大数据意义的理论非常形象——问题从一个端口进去,中间是一个集合成千上万数据的“黑匣子”,经过一番计算机工程后,答案从另一个端口出去。
所以,思忖一下大数据对于这个信息化时代的价值便是——它是将充斥世界的海量数据采用数学算法予以“提纯”、钻取并随后或抽出规律,或处理成有用信息。
运用到大健康上,怎么看?拿咱们极客圈精神领袖乔帮主举例好了。帮主自罹癌至离世长达八年之久,这几乎创造了胰腺癌历史上的奇迹。据悉,乔布斯在抗癌斗争中支付大量费用对自身DNA和肿瘤DNA进行排序,他得到了包括整个基因密码的数据文档。这样的话,医生们能基于乔的特定基因组成按所需效果用药,如果癌症病变导致药物失效,医生可以及时更换另一种药,乔布斯靠这种获得所有数据而非传统样本的方式将生命延长了好几年。
笔者认为在探讨健康大数据的话题时,首先要明确一个时间节点——患病。在这个时间节点之前,其实是有一系列原因可以表征疾病不是偶然的。比如说基因、环境、生活习惯。在时间点之后,你需要进入常规的医疗诊断流程:1、患者提供各类体征信息;2、医生获得体征信息,进行诊断,下处方或提供治疗方案;3、药房开药给患者或者在医院进行其它相关治疗。
软硬结合的健康数据采集器应景而生,比如智能血压仪、血糖仪。患病前,人类用肉眼看不到的隐患,会被机器用计算机工程“瞄准”,带你用无限接近精准的相似度一步步逼近真相。这是福音,人类不是得了病之后再去采集数据,而是之前就能采集你所有的日常健康数据,这或将该死的病患扼杀在摇篮中,或也能将医生从医院机构桎梏中彻底解放。
歧途:单纯地量化与呈现数据,然后就没有然后了
可是呢?如今国内的那群天天叫嚷着大数据的采集器们都在做什么??以笔者熟稔的健康类可穿戴设备为例。加速度传感器、蓝牙模块,振动马达、三轴传感器……采集数据的硬件装备几乎都是极好的,那么然后呢?
很多计步器们或在做这件事——“恭喜您,今天又跑了多少万步,消耗了多少大卡”,这是数据的告知;很多血压仪们或在做另一件事——“血压阶段曲线显示,您今日的血压达到峰值,小心龙/凤体欠安哟”,这至多还是在数据告知的基础上添加了数据呈现……然后,大部分可穿戴们就没有然后了。
而一个完整的数据钻取挖掘过程是这样的:基于用户数据的大数据仓库→真正的数据中心核心数据资产→基于用户数据行为分析的数据再利用→让数据价值得到升华,按照这样的流程,很多可穿戴系们往往只做到了步骤一、二。
比如,一台心脏监控仪的心电图每秒钟就能产生1000个读数。但是只有部分的数据是被保存使用的,大部分都束之高阁了。即使这些数据都能在一定程度上表现出病人的情况。当与其他病人的数据一起考虑的时候,它们就能显现出哪些治疗方法是有效的。
好可惜啊,很多机器在刚触及数据大金矿的表层时就屁颠屁颠地抛开铲子躺在金矿上呼呼睡懒觉了。
方案:打通 “孤岛”之困,让数据流淌
移动健康的标配模式便是“硬+软+云”,可千万别忽视这最后的云储存,循序渐进地上传至云端的庞杂数据才是众兵家厮杀的最终大奶酪。此前,笔者曾在《首轮可穿戴潮:不是卖功能,而是卖可能》一文中已阐明了类似的观点。你瞧,IT大佬百度为何迫不及待地开通Dulife平台,旗下又收纳了一匹匹健康类可穿戴黑马PICOOC、MUMU等科技公司产品。原因何在?了解BAT三巨头的人都清楚:马云擅布局、马化腾爱产品、李彦宏懂技术。技术控的李彦宏一直坚信——互联网倘若想更好地发展,必须靠云。云端数据是“软”+“硬”最终的果实和结晶。
如果采集器们对辛苦采集的数据不注重利用与反馈,那些漂至云端的大数据终究是不接地气的、终究是冷冰冰的一组数字堆砌物而已。
临末还想阐述的一个重点就是前文提及到的“黑匣子”,这里隐藏了外行人难以得知的大数据算法——即机器是如何分析和解读采集的数据的。
比如,站在一台智能秤上,它会根据你人体的BMI、体脂率、肌肉量等健康数据经过“黑匣子”处理后,打分,测出你属于“九重体型”中的哪一种。并且,它还会一对一地给出相应的运动和饮食方案。目前PICOOC Latin正在进行这个步骤。
数字是灵动的,数据终归也是要双向流动的。上一步“黑匣子”输出的答案,或变成了下一步要输入另一个“黑匣子”的问题。比如Latin智能秤测量后给出运动方案后,下一步由其智能手环来监督贯彻下去,同时将运动结果再次反馈上传,形成完整的闭环。这充分打通了整个数据产业链,让数据不再只是困于数据库“孤岛”中。
如果让数据流淌地更凶猛些,或许健康大数据的未来就像某医药公司高层所讲,体检机构、药厂、保险公司以及医疗仪器生产厂家之间建立一个信息汇总以及数据分析平台,将各个领域的信息孤岛连接起来,给消费者和健康行业带来完全颠覆性的未来。
迎接这场颠覆性革命,犹如一场科技版的“等待戈多”。诸位为之发奋吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05