
大数据是很火,但关键要“活”起来
鉴于大数据在IT圈内近乎拽上天的地位,笔者最近一直在阅读学习《大数据时代》,据说这本书能带来生活、工作与思维的大变革。《大数据时代》有个核心观点是大数据依赖的是相关关系,而不是因果关系。它告诉你的是会发生什么,而不是为什么发生。而笔者也想借维克托之口通过本文告诉外界,我们终将会进入一场轰轰烈烈的大数据时代。至于为什么会发生,笔者也想补充一点说,在这个讲究“连接”的世界,抛却那些技术盲,没有人会逃出数字化世界的魔咒。
本文中,笔者想将这个热火的三个字带引到移动大健康领域,探讨大数据对这个符合人性“长命百岁”领域的可借鉴与启迪意义。
核心:大数据的最大本事在于预测
很多人都在聊大数据,其实根本不了解为何身边人聊它。难道你认为,跟着奥巴马聊大数据的国家战略只是很潮么?笔者觉得,大数据的最大本事在于能在问题发生前预测性地给出答案。维克托·迈尔·舍恩伯格用“黑匣子”表述大数据意义的理论非常形象——问题从一个端口进去,中间是一个集合成千上万数据的“黑匣子”,经过一番计算机工程后,答案从另一个端口出去。
所以,思忖一下大数据对于这个信息化时代的价值便是——它是将充斥世界的海量数据采用数学算法予以“提纯”、钻取并随后或抽出规律,或处理成有用信息。
运用到大健康上,怎么看?拿咱们极客圈精神领袖乔帮主举例好了。帮主自罹癌至离世长达八年之久,这几乎创造了胰腺癌历史上的奇迹。据悉,乔布斯在抗癌斗争中支付大量费用对自身DNA和肿瘤DNA进行排序,他得到了包括整个基因密码的数据文档。这样的话,医生们能基于乔的特定基因组成按所需效果用药,如果癌症病变导致药物失效,医生可以及时更换另一种药,乔布斯靠这种获得所有数据而非传统样本的方式将生命延长了好几年。
笔者认为在探讨健康大数据的话题时,首先要明确一个时间节点——患病。在这个时间节点之前,其实是有一系列原因可以表征疾病不是偶然的。比如说基因、环境、生活习惯。在时间点之后,你需要进入常规的医疗诊断流程:1、患者提供各类体征信息;2、医生获得体征信息,进行诊断,下处方或提供治疗方案;3、药房开药给患者或者在医院进行其它相关治疗。
软硬结合的健康数据采集器应景而生,比如智能血压仪、血糖仪。患病前,人类用肉眼看不到的隐患,会被机器用计算机工程“瞄准”,带你用无限接近精准的相似度一步步逼近真相。这是福音,人类不是得了病之后再去采集数据,而是之前就能采集你所有的日常健康数据,这或将该死的病患扼杀在摇篮中,或也能将医生从医院机构桎梏中彻底解放。
歧途:单纯地量化与呈现数据,然后就没有然后了
可是呢?如今国内的那群天天叫嚷着大数据的采集器们都在做什么??以笔者熟稔的健康类可穿戴设备为例。加速度传感器、蓝牙模块,振动马达、三轴传感器……采集数据的硬件装备几乎都是极好的,那么然后呢?
很多计步器们或在做这件事——“恭喜您,今天又跑了多少万步,消耗了多少大卡”,这是数据的告知;很多血压仪们或在做另一件事——“血压阶段曲线显示,您今日的血压达到峰值,小心龙/凤体欠安哟”,这至多还是在数据告知的基础上添加了数据呈现……然后,大部分可穿戴们就没有然后了。
而一个完整的数据钻取挖掘过程是这样的:基于用户数据的大数据仓库→真正的数据中心核心数据资产→基于用户数据行为分析的数据再利用→让数据价值得到升华,按照这样的流程,很多可穿戴系们往往只做到了步骤一、二。
比如,一台心脏监控仪的心电图每秒钟就能产生1000个读数。但是只有部分的数据是被保存使用的,大部分都束之高阁了。即使这些数据都能在一定程度上表现出病人的情况。当与其他病人的数据一起考虑的时候,它们就能显现出哪些治疗方法是有效的。
好可惜啊,很多机器在刚触及数据大金矿的表层时就屁颠屁颠地抛开铲子躺在金矿上呼呼睡懒觉了。
方案:打通 “孤岛”之困,让数据流淌
移动健康的标配模式便是“硬+软+云”,可千万别忽视这最后的云储存,循序渐进地上传至云端的庞杂数据才是众兵家厮杀的最终大奶酪。此前,笔者曾在《首轮可穿戴潮:不是卖功能,而是卖可能》一文中已阐明了类似的观点。你瞧,IT大佬百度为何迫不及待地开通Dulife平台,旗下又收纳了一匹匹健康类可穿戴黑马PICOOC、MUMU等科技公司产品。原因何在?了解BAT三巨头的人都清楚:马云擅布局、马化腾爱产品、李彦宏懂技术。技术控的李彦宏一直坚信——互联网倘若想更好地发展,必须靠云。云端数据是“软”+“硬”最终的果实和结晶。
如果采集器们对辛苦采集的数据不注重利用与反馈,那些漂至云端的大数据终究是不接地气的、终究是冷冰冰的一组数字堆砌物而已。
临末还想阐述的一个重点就是前文提及到的“黑匣子”,这里隐藏了外行人难以得知的大数据算法——即机器是如何分析和解读采集的数据的。
比如,站在一台智能秤上,它会根据你人体的BMI、体脂率、肌肉量等健康数据经过“黑匣子”处理后,打分,测出你属于“九重体型”中的哪一种。并且,它还会一对一地给出相应的运动和饮食方案。目前PICOOC Latin正在进行这个步骤。
数字是灵动的,数据终归也是要双向流动的。上一步“黑匣子”输出的答案,或变成了下一步要输入另一个“黑匣子”的问题。比如Latin智能秤测量后给出运动方案后,下一步由其智能手环来监督贯彻下去,同时将运动结果再次反馈上传,形成完整的闭环。这充分打通了整个数据产业链,让数据不再只是困于数据库“孤岛”中。
如果让数据流淌地更凶猛些,或许健康大数据的未来就像某医药公司高层所讲,体检机构、药厂、保险公司以及医疗仪器生产厂家之间建立一个信息汇总以及数据分析平台,将各个领域的信息孤岛连接起来,给消费者和健康行业带来完全颠覆性的未来。
迎接这场颠覆性革命,犹如一场科技版的“等待戈多”。诸位为之发奋吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16