
大数据是很火,但关键要“活”起来
鉴于大数据在IT圈内近乎拽上天的地位,笔者最近一直在阅读学习《大数据时代》,据说这本书能带来生活、工作与思维的大变革。《大数据时代》有个核心观点是大数据依赖的是相关关系,而不是因果关系。它告诉你的是会发生什么,而不是为什么发生。而笔者也想借维克托之口通过本文告诉外界,我们终将会进入一场轰轰烈烈的大数据时代。至于为什么会发生,笔者也想补充一点说,在这个讲究“连接”的世界,抛却那些技术盲,没有人会逃出数字化世界的魔咒。
本文中,笔者想将这个热火的三个字带引到移动大健康领域,探讨大数据对这个符合人性“长命百岁”领域的可借鉴与启迪意义。
核心:大数据的最大本事在于预测
很多人都在聊大数据,其实根本不了解为何身边人聊它。难道你认为,跟着奥巴马聊大数据的国家战略只是很潮么?笔者觉得,大数据的最大本事在于能在问题发生前预测性地给出答案。维克托·迈尔·舍恩伯格用“黑匣子”表述大数据意义的理论非常形象——问题从一个端口进去,中间是一个集合成千上万数据的“黑匣子”,经过一番计算机工程后,答案从另一个端口出去。
所以,思忖一下大数据对于这个信息化时代的价值便是——它是将充斥世界的海量数据采用数学算法予以“提纯”、钻取并随后或抽出规律,或处理成有用信息。
运用到大健康上,怎么看?拿咱们极客圈精神领袖乔帮主举例好了。帮主自罹癌至离世长达八年之久,这几乎创造了胰腺癌历史上的奇迹。据悉,乔布斯在抗癌斗争中支付大量费用对自身DNA和肿瘤DNA进行排序,他得到了包括整个基因密码的数据文档。这样的话,医生们能基于乔的特定基因组成按所需效果用药,如果癌症病变导致药物失效,医生可以及时更换另一种药,乔布斯靠这种获得所有数据而非传统样本的方式将生命延长了好几年。
笔者认为在探讨健康大数据的话题时,首先要明确一个时间节点——患病。在这个时间节点之前,其实是有一系列原因可以表征疾病不是偶然的。比如说基因、环境、生活习惯。在时间点之后,你需要进入常规的医疗诊断流程:1、患者提供各类体征信息;2、医生获得体征信息,进行诊断,下处方或提供治疗方案;3、药房开药给患者或者在医院进行其它相关治疗。
软硬结合的健康数据采集器应景而生,比如智能血压仪、血糖仪。患病前,人类用肉眼看不到的隐患,会被机器用计算机工程“瞄准”,带你用无限接近精准的相似度一步步逼近真相。这是福音,人类不是得了病之后再去采集数据,而是之前就能采集你所有的日常健康数据,这或将该死的病患扼杀在摇篮中,或也能将医生从医院机构桎梏中彻底解放。
歧途:单纯地量化与呈现数据,然后就没有然后了
可是呢?如今国内的那群天天叫嚷着大数据的采集器们都在做什么??以笔者熟稔的健康类可穿戴设备为例。加速度传感器、蓝牙模块,振动马达、三轴传感器……采集数据的硬件装备几乎都是极好的,那么然后呢?
很多计步器们或在做这件事——“恭喜您,今天又跑了多少万步,消耗了多少大卡”,这是数据的告知;很多血压仪们或在做另一件事——“血压阶段曲线显示,您今日的血压达到峰值,小心龙/凤体欠安哟”,这至多还是在数据告知的基础上添加了数据呈现……然后,大部分可穿戴们就没有然后了。
而一个完整的数据钻取挖掘过程是这样的:基于用户数据的大数据仓库→真正的数据中心核心数据资产→基于用户数据行为分析的数据再利用→让数据价值得到升华,按照这样的流程,很多可穿戴系们往往只做到了步骤一、二。
比如,一台心脏监控仪的心电图每秒钟就能产生1000个读数。但是只有部分的数据是被保存使用的,大部分都束之高阁了。即使这些数据都能在一定程度上表现出病人的情况。当与其他病人的数据一起考虑的时候,它们就能显现出哪些治疗方法是有效的。
好可惜啊,很多机器在刚触及数据大金矿的表层时就屁颠屁颠地抛开铲子躺在金矿上呼呼睡懒觉了。
方案:打通 “孤岛”之困,让数据流淌
移动健康的标配模式便是“硬+软+云”,可千万别忽视这最后的云储存,循序渐进地上传至云端的庞杂数据才是众兵家厮杀的最终大奶酪。此前,笔者曾在《首轮可穿戴潮:不是卖功能,而是卖可能》一文中已阐明了类似的观点。你瞧,IT大佬百度为何迫不及待地开通Dulife平台,旗下又收纳了一匹匹健康类可穿戴黑马PICOOC、MUMU等科技公司产品。原因何在?了解BAT三巨头的人都清楚:马云擅布局、马化腾爱产品、李彦宏懂技术。技术控的李彦宏一直坚信——互联网倘若想更好地发展,必须靠云。云端数据是“软”+“硬”最终的果实和结晶。
如果采集器们对辛苦采集的数据不注重利用与反馈,那些漂至云端的大数据终究是不接地气的、终究是冷冰冰的一组数字堆砌物而已。
临末还想阐述的一个重点就是前文提及到的“黑匣子”,这里隐藏了外行人难以得知的大数据算法——即机器是如何分析和解读采集的数据的。
比如,站在一台智能秤上,它会根据你人体的BMI、体脂率、肌肉量等健康数据经过“黑匣子”处理后,打分,测出你属于“九重体型”中的哪一种。并且,它还会一对一地给出相应的运动和饮食方案。目前PICOOC Latin正在进行这个步骤。
数字是灵动的,数据终归也是要双向流动的。上一步“黑匣子”输出的答案,或变成了下一步要输入另一个“黑匣子”的问题。比如Latin智能秤测量后给出运动方案后,下一步由其智能手环来监督贯彻下去,同时将运动结果再次反馈上传,形成完整的闭环。这充分打通了整个数据产业链,让数据不再只是困于数据库“孤岛”中。
如果让数据流淌地更凶猛些,或许健康大数据的未来就像某医药公司高层所讲,体检机构、药厂、保险公司以及医疗仪器生产厂家之间建立一个信息汇总以及数据分析平台,将各个领域的信息孤岛连接起来,给消费者和健康行业带来完全颠覆性的未来。
迎接这场颠覆性革命,犹如一场科技版的“等待戈多”。诸位为之发奋吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18