京公网安备 11010802034615号
经营许可证编号:京B2-20210330
消除关于大数据的八个神话
Gartner分析师Mark Beyer认为:企业CIO们如果想在2020年实现大数据常态化,那么就要从消除关于大数据的八个神话开始。
让十位首席信息官去定义大数据,你会得到十个不同的答案。 Gartner分析师Mark Beyer说,这是因为大数据对企业的IT专业人员来说仍然并不规范。
Beyer在今年Gartner的Symposium / ITxpo会议上说。当事情变得很常见,那它就开始正常化了,我们的工作,作为IT专业人士,就是在2020年前使大数据变得正常化。
首席信息官们可以通过从大数据谎言中区分出事实,来帮助他们的企业一步步走向正常。 神话有助于缓解焦虑,而无益于实际情况,他说。
这里是Beyer提出的八个大数据神话:
1.大数据起始于100 TB。不要再去寻觅大数据标准尺寸了,因其并没有标准尺寸。 大数据是对数据的处理,而不是数据的大小,Beyer说。
2.想要大数据就必须更换基础设施。 如果我因为有新的需求就决定改变整个基础架构,那我是把之前所有的东西都当做了赌注,Beyer说。他的经验教训是什么? 你要搞清楚,(基础设施)成熟度牺牲的风险是否值得。
3.百分之八十的数据是非结构化的。这可能是最经常被引用的大数据统计了,但根据Beyer所说,其并不准确。 世界上最大的信息资产是机器数据。因为其并未相互关联就说它们非结构化绝对是个谎言。机器数据是结构化的数据。 顺便说一句,这些大量的机器数据,往往是重复的信息,确认了一切的正常。这就是机器数据通常所表达的,他说。
4.工具将取代数据科学家。放心,所有花在吸引,拉拢,获取数据科学家上的钱都不会白花,Beyer说。工具是一种工程,工程是对已经发现的事实的重复利用。而科学是去发现新的事实。工具不会取代数据科学家 - 至少在工具可以自行复制和发展之前不会。
5.更多的数据就可以解决数据质量的问题。 数据质量越低,答案质量就越低,Beyer说。首席信息官们应该关注数据质量。以通过手机收集的气质地理定位数据为例,有些人把手机等同于真实的个 人,他说。然而,手机可以被不小心留在办公室,或者GPS功能可以在任何时间点被关闭。手机不是人,Beyer说。
6.实时只是速度更快而已。实时操作,并不意味着加快了当前数据的摄入清理和分析过程,Beyer说。而是确保数据收集和决策之间的间隔越短越好,他说。此外,大多数企业数据是不需要实时操作的。
7.数据量优于专业知识。那些认为可以简单地不再管业务流程的人,请再想一想。这是因为,一位好的数据科学家必须在某一时刻被叫停,Beyer说。如果没有业务流程,数据科学家将不断不断不断的进行下去而不能提供商业价值。需要有人帮忙划清界线。
8.数据模型没有用。这一论断很绝对。不过,Beyer澄清说,任何数字资产里的东西都有其数字模型。我们不会因为大数据就舍弃模型,他说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07