
物联网与大数据不可不说的一二事儿_数据分析师
物联网不仅仅是烤箱、冰箱、恒温器组建的网络。虽然目前智能家电是物联网的主力军。但是他们仅仅是冰山一角。
IDC预测,到2020年底,物联网设备规模将达到2120亿,包括我们想不到的:压缩机、发电机、涡轮机、鼓风机、石油钻采设备、传送带、内燃 机车和医疗成像扫描仪等等。嵌入式传感器在这些机器和设备中利用物联网来传输度量为震动、温度、湿度、风速、位置、燃料消耗、辐射水平的这些数据。
GE副总裁William Ruh说,“机器可以十分‘健谈’的。”
Ruh目前的主要工作就是帮助公司努力发展“工业物联网”,融合三大因素:智能机器、先进分析、授权用户。总之,这些因素形成了一个快速发展的多样化大数据,让早期定义的大数据洪水般地传播开来。
理解那些数据,利用他们来制造源源不断的可用物就需要一个更快、更准确、更可靠、可扩展的基础设施。仅仅是收集和存储数据是不够的,你还需要有能力去访问、建模和分析;与跨利益相关者共享成果;并支持和鼓励实时合作。
你不需要的是在数据库里拼合多余出来的独立数据。而需要工业级的,综合管理和从物联网数据和传统渠道中获取价值。
Teradata的系统部总经理Dan Graham说,在两个不同领域中,整合的数据将在产品开发和产品部署方面创造出很高的商业价值。
Graham说:“在R&D或者发展阶段,你将会用整合的数据去看所有部门如何协作。你会看到不和谐的地方。你不会独立地看某一个方面,而会看到你的供应链、库存、销售、市场需求、渠道合作伙伴,和其他很多因素。”
第二阶段是售后服务。
Graham说“现在你用整合数据来维护,飞机、机车、推土机、骑车、磁盘驱动器、自动取款机、收银机的磨损和零件故障都需要售后支持。知道出问题的部分是哪个厂商做的是很好的,他们出错的频率怎样,他们犯的是什么错误。然后你就可以在他破坏你的产品线之前就把他下线。”
NCR公司在19世纪率先推出了机械收银机,他们目前是全球消费者交易技术的领导者。他们提供软件、硬件和服务,每天在零售业、金融、旅游、酒 店、电信和技术行业大小规模加起来超过4.85亿交易额。NCR公司通过自动取款机、信息亭、销售终端、自助结账机收集远程数据,大约每秒产生3500笔 交易。然后他们利用自己定义的算法来预测那些设备可能会出的问题,并保证有技术人员在这里,避免问题的发生。
NCR的大数据/物联网策略是一个结合了Hadoop架构、Teradata Aster Discovery 平台的标准综合数据库。操作的关键就在于一体化,从而确保从物联网导入的数据可以在来自多个数据源的环境中进行分析。
MasterCard的主管及大数据、大分析的共著人 Michael Minelli 说过“游戏的名称是外生的数据,”他的言论涉及新兴商业智能和当今商业的趋势分析。“你需要结合与分析来自四面八方的数据的技巧和能力,进而,你需要将数 据转换成可操作的见解,这将推动更好的决策,并拓展你的业务。来自物联网的数据仅仅是你需要组织管理的所有数据源中的一种”
Koeppel说,“相比传统数据类型,从物联网收集的大数据趋向于“更加短暂化”。公司的财务数据记录同公司为营销活动所收集的地理空间数据是有所不同的。由于政府的管制,用于设计优惠券的手机端数据是不允许存储、记录的。”
这表示,从物联网大数据正在迅速失去作为一个特殊获取渠道的地位。假以时日,大数据将仅是所有数据源中普普通通的一种,理想的话,你的数据库系统将在任何时候允许你处理任何你想要处理的数据类型,以能够让你再众多可能的处理方法中选择或创造出最可行的方案。
“在最理想的情况下,我们将融合来自物联网的数据与数据库中的数据并借此为消费者及时提供最大可能的帮助或者让消费者们知道他们的汽车的汽油十分钟后将耗尽“Koeppel说到。
“有效地将物联网数据及传统的数据库无缝连接将是最行之有效的办法。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29