京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网与大数据不可不说的一二事儿_数据分析师
物联网不仅仅是烤箱、冰箱、恒温器组建的网络。虽然目前智能家电是物联网的主力军。但是他们仅仅是冰山一角。
IDC预测,到2020年底,物联网设备规模将达到2120亿,包括我们想不到的:压缩机、发电机、涡轮机、鼓风机、石油钻采设备、传送带、内燃 机车和医疗成像扫描仪等等。嵌入式传感器在这些机器和设备中利用物联网来传输度量为震动、温度、湿度、风速、位置、燃料消耗、辐射水平的这些数据。
GE副总裁William Ruh说,“机器可以十分‘健谈’的。”
Ruh目前的主要工作就是帮助公司努力发展“工业物联网”,融合三大因素:智能机器、先进分析、授权用户。总之,这些因素形成了一个快速发展的多样化大数据,让早期定义的大数据洪水般地传播开来。
理解那些数据,利用他们来制造源源不断的可用物就需要一个更快、更准确、更可靠、可扩展的基础设施。仅仅是收集和存储数据是不够的,你还需要有能力去访问、建模和分析;与跨利益相关者共享成果;并支持和鼓励实时合作。
你不需要的是在数据库里拼合多余出来的独立数据。而需要工业级的,综合管理和从物联网数据和传统渠道中获取价值。
Teradata的系统部总经理Dan Graham说,在两个不同领域中,整合的数据将在产品开发和产品部署方面创造出很高的商业价值。
Graham说:“在R&D或者发展阶段,你将会用整合的数据去看所有部门如何协作。你会看到不和谐的地方。你不会独立地看某一个方面,而会看到你的供应链、库存、销售、市场需求、渠道合作伙伴,和其他很多因素。”
第二阶段是售后服务。
Graham说“现在你用整合数据来维护,飞机、机车、推土机、骑车、磁盘驱动器、自动取款机、收银机的磨损和零件故障都需要售后支持。知道出问题的部分是哪个厂商做的是很好的,他们出错的频率怎样,他们犯的是什么错误。然后你就可以在他破坏你的产品线之前就把他下线。”
NCR公司在19世纪率先推出了机械收银机,他们目前是全球消费者交易技术的领导者。他们提供软件、硬件和服务,每天在零售业、金融、旅游、酒 店、电信和技术行业大小规模加起来超过4.85亿交易额。NCR公司通过自动取款机、信息亭、销售终端、自助结账机收集远程数据,大约每秒产生3500笔 交易。然后他们利用自己定义的算法来预测那些设备可能会出的问题,并保证有技术人员在这里,避免问题的发生。
NCR的大数据/物联网策略是一个结合了Hadoop架构、Teradata Aster Discovery 平台的标准综合数据库。操作的关键就在于一体化,从而确保从物联网导入的数据可以在来自多个数据源的环境中进行分析。
MasterCard的主管及大数据、大分析的共著人 Michael Minelli 说过“游戏的名称是外生的数据,”他的言论涉及新兴商业智能和当今商业的趋势分析。“你需要结合与分析来自四面八方的数据的技巧和能力,进而,你需要将数 据转换成可操作的见解,这将推动更好的决策,并拓展你的业务。来自物联网的数据仅仅是你需要组织管理的所有数据源中的一种”
Koeppel说,“相比传统数据类型,从物联网收集的大数据趋向于“更加短暂化”。公司的财务数据记录同公司为营销活动所收集的地理空间数据是有所不同的。由于政府的管制,用于设计优惠券的手机端数据是不允许存储、记录的。”
这表示,从物联网大数据正在迅速失去作为一个特殊获取渠道的地位。假以时日,大数据将仅是所有数据源中普普通通的一种,理想的话,你的数据库系统将在任何时候允许你处理任何你想要处理的数据类型,以能够让你再众多可能的处理方法中选择或创造出最可行的方案。
“在最理想的情况下,我们将融合来自物联网的数据与数据库中的数据并借此为消费者及时提供最大可能的帮助或者让消费者们知道他们的汽车的汽油十分钟后将耗尽“Koeppel说到。
“有效地将物联网数据及传统的数据库无缝连接将是最行之有效的办法。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16