
移动医疗大数据的几个伪命题(3)_数据分析师
上一篇文章发出后,有小伙伴来问我,如果我在垃圾中,搜寻了很久,最后搜到的可能不是一块金子,而是一块大钻石呢?这不就回本了吗?嘿,根据墨菲定律,你最后翻到的大 概率还是垃圾,即使突然看到闪烁的亮光,打开一看,也许就是个玻璃珠。
做企业并不是赌博,不能把希望寄托在虚无缥缈的事情上,也不要去追求超出自己能力范围的东西。一个公司就7,8个光棍,也没有一个数据分析人才(如果真的去了解过大数据人才的市场价薪酬,估计已经心脏病发了),还整天到处忽悠大数据的商业模式!
我们从前在抽样调查的过程中,为了确保结论有价值,一定要采用具有代表性的样本,这样该样本才能排除各种误差。不过对于移动医疗大数据分析来说,即使是基于海量数据,并获得了很多的所谓结果,还是会有偏差的,而这往往是来源于系统本身。从理论的角度来看,移动医疗大数据应具有足够的效度和信度。
信度是指测量数据的可靠程度,效度表示一项研究的真实性和准确性程度。在医疗行业的大数据分析中,有很多情况会导致大数据的信度和效度产生问题。下面我们就来具体讨论一下。
1. 极大值和极小值
移动医疗的大数据中,极大值与极小值在很多情况下是有巨大参考价值的。大数据一般都是散点图,当我们想通过大数据分析获得正态分布图,或者平均数时,一般要采用均值,中位数或者众数,否则结果容易有偏差。对于一堆普通数据来说,极大值和极小值这两个极端是不能对数据整体进行定性的。就如同我们看奥运会跳水比赛一样,在计算总成绩的时候,总是需要去除一个最高分和一个最低分,然后取平均数。
但是医疗数据有些非常特殊的地方,而且由于极小值与极大值的存在,反而可能使平均结果并没有那么大的意义。上一篇文章中我曾经提到了数据的特异性和敏感性问题。其实医疗实践中还有一个非常重大的问题,就是安全性和一票否决的情况。比如说,就算99%的人用药安全,但是确定出现了1%的死亡率,并且证明不是偶然事件的话,那么也是不可接受的。
实际上在大数据分析上也是如此,有的时候我们做出一个分析是为了要辅助决策的,但是很多具体情况里,即使分析了多年的数据发现60%的人都是受益的,那又怎么样?能够大规模推广吗?真的有价值吗?你如何反向证明呢?这是医疗行业的独特性所决定的,和其它行业的大数据分析有巨大的区别,各位从业人员不可不察。
而且,虽然极大值极小值在很多情况下是属于极端情况、小概率事件,但同样在很多医疗情景下,他们也具有定性的作用,所以数据在什么情况下是有价值的,什么情况下是分文不值的,需要具体问题具体分析,没法一刀切!
2. 大数据会反作用于大数据
大数据的研究结果本身会反作用于大数据,正如市场干预者会影响到市场本身。当一个公司打算有计划地去收集一些数据的时候,这些数据本身就或多或少的受到了某种程度的影响,导致缺乏信度和效度!
比如,目前市场上出现了越来越多的可穿戴设备,主要应用于医疗及健康监测、健身等领域。他们通常都有同一个所谓的终极商业模式,就是大数据的分析。监测穿戴者身上的某种特定数据,比如血压、脉搏、体温等等,然后对他们进行健康管理,以及通过大数据收集进行某项数据的分析。但是对于这种对数据的关注所造成的一些后果,其影响可能已经超过了数据本身。
对患者时刻进行数据监测,进行大数据统计分析的过程,其实是对他进行不停地潜移默化的影响过程,它使患者处于一种时刻被提醒的状态,被提醒疾病的存在,被提醒数据的变化,被提醒病情的发展等。
很多时候,对患者来说,如果能够顺其自然地接纳一些症状、摆脱一些痛苦以及不安、烦恼等情绪,最后反而对疾病的恢复有正面积极的作用,因为人性是不想被束缚的。心理学上有一种治疗方法叫做“森田疗法”,主要适用于强迫症、社交恐怖、广场恐怖、惊恐发作的治疗。该方法与通过对个人数据的持续监测来治疗的方式完全不同,它强调分散对疾病的注意力,放松大脑里的那根时刻关注疾病的神经。“顺其自然、为所当为”是森田疗法的基本治疗原则。它不提倡追溯过去,认为人要重视当前的现实生活,要通过现实生活去获得体验性的认识,要顺应情绪的自然变化,努力按照目标去行动。
而很多类似于可穿戴设备的大数据收集,恰恰是给人们设置了这样一种束缚机制,人们进入其中,患得患失,最后还需要主动或者被动地接受所谓干预与反馈。疾病的防治确实很重要,但是在疾病的治疗过程中,如果这般,长此以往,还要担心很多其它的问题发生,因为过度监测并不总是有利的。
比如从心理学角度来讲,有一种典型的“疑病症”,它属于心理问题躯体化的一种表现。当人们对自身的健康状况或身体的某一部分过分关注,于是就总是会怀疑自己得了什么病,而且常常会在感知方面产生某种与所假想的病症相符的幻觉。甚至真的会产生某种生理症状的变化,因为人的心理力量非常强大。
另一方面,医疗数据的波动很多也是由心理因素导致的,从众性很强。假如一个班级里有三个学生出现了感冒症状(有的都不一定是感冒),那么很多其他的学生也会觉得自己好像哪里不舒服。如果像以上这些情况也被收录到医疗大数据中去,而被“正儿八经”进行分析的话,有何价值可言?伪数据还不如无数据。0
其实对于一般的患者和普通人来说,没必要一直监测自己身体数据的动态变化。这种监测很多时候是没有意义的小题大做,哗众取宠。冠冕堂皇的背后其实多数是商业利益的驱动和“健康传销”。从大众的恐慌中获益,根本就没有考虑企业的社会责任,不以降低医患成本为核心的移动医疗,都在耍流氓!因为在长期的医疗实践中,形成了很多科学的监测手段和流程,经过了千锤百炼。比如为什么是24小时尿量监测,不是240小时呢?为什么是48小时心脏hotter监测,你怎么不戴480小时呢?因为不需要那么长时间!这还有一个卫生经济学的成本问题,因为对整个社会来说,减少过度医疗和过度关注,那么节约的钱是可以挽救很多生命的!
其实我并非反对移动医疗大数据,也不是想黑医疗可穿戴硬件,这世界有的时候并没有不好的事业,只有不好的人。我经过调研后发现,有很多公司总想创造不必要的检查,恨不得正常人,每天测两次血糖,监测三次血压,做一次心电图以完成所谓的健康监测,然后还从文献和学术研究中找到很多线索,向大众进行过度宣传。其内在的深层次原因,让我想起了资本论中提到的一种现象,如果一个商人是卖玻璃的,他恨不得目光所及处的玻璃都是碎的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22