京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网不仅仅是烤箱、冰箱、恒温器组建的网络。虽然目前智能家电是物联网的主力军。但是他们仅仅是冰山一角。
IDC预测,到2020年底,物联网设备规模将达到2120亿,包括我们想不到的:压缩机、发电机、涡轮机、鼓风机、石油钻采设备、传送带、内燃 机车和医疗成像扫描仪等等。嵌入式传感器在这些机器和设备中利用物联网来传输度量为震动、温度、湿度、风速、位置、燃料消耗、辐射水平的这些数据。
GE副总裁William Ruh说,“机器可以十分‘健谈’的。”
Ruh目前的主要工作就是帮助公司努力发展“工业物联网”,融合三大因素:智能机器、先进分析、授权用户。总之,这些因素形成了一个快速发展的多样化大数据,让早期定义的大数据洪水般地传播开来。
理解那些数据,利用他们来制造源源不断的可用物就需要一个更快、更准确、更可靠、可扩展的基础设施。仅仅是收集和存储数据是不够的,你还需要有能力去访问、建模和分析;与跨利益相关者共享成果;并支持和鼓励实时合作。
你不需要的是在数据库里拼合多余出来的独立数据。而需要工业级的,综合管理和从物联网数据和传统渠道中获取价值。
Teradata的系统部总经理Dan Graham说,在两个不同领域中,整合的数据将在产品开发和产品部署方面创造出很高的商业价值。
Graham说:“在R&D或者发展阶段,你将会用整合的数据去看所有部门如何协作。你会看到不和谐的地方。你不会独立地看某一个方面,而会看到你的供应链、库存、销售、市场需求、渠道合作伙伴,和其他很多因素。”
第二阶段是售后服务。
Graham说“现在你用整合数据来维护,飞机、机车、推土机、骑车、磁盘驱动器、自动取款机、收银机的磨损和零件故障都需要售后支持。知道出问题的部分是哪个厂商做的是很好的,他们出错的频率怎样,他们犯的是什么错误。然后你就可以在他破坏你的产品线之前就把他下线。”
NCR公司在19世纪率先推出了机械收银机,他们目前是全球消费者交易技术的领导者。他们提供软件、硬件和服务,每天在零售业、金融、旅游、酒 店、电信和技术行业大小规模加起来超过4.85亿交易额。NCR公司通过自动取款机、信息亭、销售终端、自助结账机收集远程数据,大约每秒产生3500笔 交易。然后他们利用自己定义的算法来预测那些设备可能会出的问题,并保证有技术人员在这里,避免问题的发生。
NCR的大数据/物联网策略是一个结合了Hadoop架构、Teradata Aster Discovery 平台的标准综合数据库。操作的关键就在于一体化,从而确保从物联网导入的数据可以在来自多个数据源的环境中进行分析。
MasterCard的主管及大数据、大分析的共著人 Michael Minelli 说过“游戏的名称是外生的数据,”他的言论涉及新兴商业智能和当今商业的趋势分析。“你需要结合与分析来自四面八方的数据的技巧和能力,进而,你需要将数 据转换成可操作的见解,这将推动更好的决策,并拓展你的业务。来自物联网的数据仅仅是你需要组织管理的所有数据源中的一种”
Koeppel说,“相比传统数据类型,从物联网收集的大数据趋向于“更加短暂化”。公司的财务数据记录同公司为营销活动所收集的地理空间数据是有所不同的。由于政府的管制,用于设计优惠券的手机端数据是不允许存储、记录的。”
这表示,从物联网大数据正在迅速失去作为一个特殊获取渠道的地位。假以时日,大数据将仅是所有数据源中普普通通的一种,理想的话,你的数据库系统将在任何时候允许你处理任何你想要处理的数据类型,以能够让你再众多可能的处理方法中选择或创造出最可行的方案。
“在最理想的情况下,我们将融合来自物联网的数据与数据库中的数据并借此为消费者及时提供最大可能的帮助或者让消费者们知道他们的汽车的汽油十分钟后将耗尽“Koeppel说到。
“有效地将物联网数据及传统的数据库无缝连接将是最行之有效的办法。”
(本文作者Mike Barlow,并经物媒体编译,转载请标注——转自物媒体:www.iwumeiti.com)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23