京公网安备 11010802034615号
经营许可证编号:京B2-20210330
时下最热概念“大数据”,作为一个行业专业术语,充斥着网络报纸。显然,我们已经站在了一个时代的转折点,互联网全球化、移动设备普及化、云计算存储低成本化、物质世界网络化,都在为“数据大爆发”储蓄能量,即将翻来人类历史新篇章。
当代著名丹麦物理学家尼尔斯·玻尔(Niels Bohr)曾说:“预测是非常困难的,尤其是对未来的预测。”在科学技术瞬息万变的时代,亦是如此,今日的一个大胆预测,说不定就是明日的已成事实。而对 广泛应用技术及市场动向的前瞻性预判,是对当今企业家和高管们的严峻考验,关乎到下一个商业帝国的成败。
此外,预测未来就像是古老的魔法水晶球一样有趣,但是数据的应用并不像发掘那么容易。现在,让我们随着美国互联网私募投资公司Insight Venture Partners总经理Deven Parekh的视角,一同去看看大数据时代将为经济和生活带来哪些新的机遇和挑战。
大数据下的恐怖主义
前段时间引起轩然大波的索尼影业遭黑客攻击事件,是一次明目张胆的国家支持的网络攻击。本文暂不讨论孰是孰非,但在此次事件中,索尼影业的网络系统遭黑客攻击,员工信件、薪酬及电影剧本等信息被泄露,大量公开的内部数据引起了索尼的高度恐慌。
现在每一家《财富》杂志世界2000强企业都在思考:我的公司数据安全吗?如果数据公布于众,将会置我于何地?与此同时,安全软件公司也正致力于大数据分析软件的开发,以帮助企业更好地保护数据安全,避免日后的攻击。
大数据下的公民自由权
数据驱动的决策工具不仅仅应用于商业领域,同时还被广泛用于挑选最合适的学校、医生和雇主。同样,企业也用大数据分析软件来寻找并雇用优秀的员工,或是选择目标客户。
但是,倘若上述的一切都是建立在公民隐私权的基础之上呢?大数据的内容会囊括公民的生活方式选择、健康,甚至还有种族、性别或年龄,不是刻意的去侵 犯公民隐私,只是为了更好的做出决定呢?目前,所有的学校、公司和公共机构都制定了保护隐私、公平和反歧视的条例,并且有政府的强制实施作为坚强后盾。大 数据时代所带来的不可避免的侵犯隐私权和公民自由权问题正逐渐为世人所知,如何保护公民的这些权利并且跟上日新月异的大数据研究步伐,值得我们深思。
大数据下的政府数据
2015年,期望政府数据更加透明化、实用化。通常,公共部门是私营企业的重要数据来源,政府数据可以让更多的企业将大数据应用于产品及服务中,发挥其最大功能效用。
以旧金山意外天气保险公司Climate Corporation为例,它通过分析气象部门所掌握的海量天气数据来预测未来可能对农业生产造成破坏的各种天气,为农民提供相应的农业保险,以降低恶 劣天气对农业生产造成的影响。还有美国房地产信息查询网站Zillow,通过使用联邦政府和当地政府的分析数据,包括卫星照片、税额查定、经济统计数据, 为房屋买家提供全面的房地产市场动态。
大数据下的个性化医疗
即使在个人隐私方面还存在较大争论,大数据已然在模糊医疗保健领域的分界线。不论是将其称作“精准医疗”也好,“个性化医疗”也罢,都是将数字化的保健系统和可穿戴设备应用其中,这两大趋势联成一体,正悄然革新健康医疗产业。
在不久的将来,医生将会根据病人的基因组、活动水平和真实健康情况,为患者定制个性化的药物和治疗方式。而此时,普通患者对特定治疗方案数据来源的反应已经显得不重要了,因为没有病人会拒绝最佳治疗方案,即便是以牺牲部分病人隐私权为代价。
医疗信息技术是目前投资的热门领域,但是临床决策还主要是靠医师的临床指南,而不是大数据。在未来,大数据分析很有可能会打破这一局面,彻底改变人类医疗健康行业。
大数据下的数字化学习
美国每年在公共基础教育和高等教育的支出高达1.2万亿美元,但是学生的成绩和表现依然不能达到政策制定者的预期,同时还引发了教育工作者和校方关 于教育制度改革的讨论。支持改革者认为教育系统应该引入市场化运作模式,重点突出学生测验、问责制和绩效考核;而反对者却认为应该提升教学工作水平,在教 学资源上加大投资力度。
但双方在数字化学习方面却有共同的认识,课堂内外的数字化学习已经是不可阻挡的趋势。从大型在线课程开发到适应性学习技术,都是个性化的将教学材料 传输至每一个学生,教学技术凭借大数据环境获得突飞猛进的发展。从熟知的名字到陌生的名词,不断有新的数字产品出现,一改将内容放置网络共享的传统模式, 而是从根本上改变学生的学习时间和方式,改变教师指导学生进步的方法。
综上所述,从简单采用到真正开发利用,大数据在五个领域将会发生的深刻变化,又如何助力经济转型与生活变迁,2015年无疑是大数据的爆破之年,让我们拭目以待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05