
关于O2O的文章也已经很多了,但大多数都是在探讨关于流量、入口、销售、融资等问题,很少有人深入考虑在O2O的背后,大数据所起到的导向作用。其实大数据所具备的意义大家都基本了解,但是如何整合线上线下的数据让大数据真正完成一个O2O的闭环才是O2O模式的真正价值所在,我们在这里不妨探讨一下。
对于电商企业而言,要做O2O就要把线上的业务像线下拓展,通过实体店铺让用户真正的将体验落到实地。同时通过线下的数据反馈回线上,为线上提供更多的数据资源,完成O2O闭环。
但是在O2O模式下的数据流通说起来简单,操作起来并不容易。对于一般公司而言,线上与线下并非在一起,而是由不同的部门来运营。线上数据通常都由平台来处理,再以类似数据魔方的产品反馈给商家,在公司手中掌握的只是最基本的用户订单数据而已。
线上的订单越多,平台通过云计算分析出的数据结果也越能为商家提供参考,平台数据的可靠性也就越高。
而在线下,数据则是依靠实体店铺会员制度、销售环节、调查问卷等形式来收集。这同线上的数据就形成了完全隔离开的两个部分,线上数据与线下数据各自为战。这样就会导致O2O的两个O之间在数据层面上的脱节,很多数据的价值将无法被挖掘出来。
例如当线上的会员到线下来购买或体验产品时,线上是无法追踪到这个用户的行为的,而线下的用户到线上去选购产品时,线上则无法识别出这名用户是来自线下的,只会按照一个新会员来对待这名用户。如此一来,线上与线下的数据在用户产生跨越界限的行为时就会出现断层。
所以线上与线下的数据整合才是在O2O的模式下大数据分析真正的核心所在,如果不能整合线上与线下的数据,就不能称之为O2O模式了,在两个O之间就会产生数据断层,大数据分析的价值将大打折扣。
我们也可以这样理解,在O2O模式下,数据层面其实是不存在线上与线下的,应该成为整合的一个整体数据中心。无论用户是通过线上哪条渠道进入在线商城,微信、微博还是其他渠道,线上都会通过营销与技术结合的手段获取到用户基本数据与行为数据。
而在移动互联网领域,这一点将更加有效,因为LBS定位的存在,线上甚至可以获取到用户所在的位置信息并通过这一关键数据获取更多的价值。
对于线下,则必须与线上实现数据互通,线下的数据才能真正反馈到线上,而通过对线上采集的数据与线下数据的配比分析,才能更加有效的对实体店铺的摆货、产品陈列产生有价值的参考。
以前的线下实体店会员数据完全是孤立的,而随着O2O的出现,智能可穿戴设备的普及,线下也可以像线上一样,开展一系列的定位、洞察用户、数据分析,让线下实体店也成为流量入口。
这样一来将线上与线下系统整合,建立起企业自己的数据中心,从线上到线下,每一个节点都将产生数据。未来企业O2O之间的竞争将会成为数据分析、挖掘与应用的竞争。(来源:亿欧网 文/周磊飞 编选:中国电子商务研究中心)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07