
谁能用大数据写出那个神秘的小纸条
前两年有一部叫做《点球成金》的电影非常成功,我是在从香港飞往纽约的飞机上观看的。这部由真实事件改变的影片,讲述了全美职棒大联盟的球队奥克兰绿帽队,在经理比恩的带领下,发挥出了超乎想象的实力,最终以弱胜强的故事。这个故事中的传奇经理比恩,重用了数据分析天才布兰德。通过大量的数据分析,挖掘了一批其貌不扬,但是却能够在球队里各司其职的边缘球员。而这种看似神奇的案例,在大数据时代的背景下是完全可能被复制的。实际上比恩和布兰德所运用的分析手段以及数据量,并没有达到大数据的标准。而促使他们成功的关键,却是他们对于数据的解读和认知。那么在今天我们拥有了难以计数的大数据的情况下,怎样能够复制并超越比恩的成功,就成为了所有企业和所有人成败的关键。
英国有一家十分成功的大数据分析公司叫做OPTA。这家大数据公司从收集及分析英超足球比赛数据开始,几年之间将自己的业务扩展到了NBA、网球、高尔夫等几十项体育项目,覆盖了几乎全球所有的主流体育赛事。以足球为例,OPTA为每场比赛提供超过200项数据的收集以及分析服务。球员在场上的每一次触球、每一次跑动、每一次有意识或无意识的动作,都会被OPTA专业的软件记录下来。假设每一场比赛首发加替补,两队一共出场了25名球员,那么OPTA将为这场比赛提供至少5000项球员数据。算上球队数据,每场比赛OPTA就能为球队经理们提供一个十分庞大的数据量。那么如果球队经理们能够正确地运用这些数据,复制比恩的传奇将成为可能。
在2006年世界杯四分之一决赛的点球决战时刻,德国队的守门员莱曼在阿根廷队球员罚点球之前,接到了来自教练组的一张神秘小纸条。凭借这张小纸条,莱曼精准地预判到了阿根廷队多名球员的罚球方向,并扑出了两名阿根廷队球员的点球。而这个神秘的小纸条,正是运用了数据分析,准确地预测了阿根廷球员的罚球方向及角度。这神秘的小纸条就如同芝麻开门的钥匙,能够将大数据这座大山点石成金。
实际上,我们中国自古就有利用数据来分析并作出预测的实例。三国时期,诸葛亮夜观天象,通过对天文数据的收集及分析,准确地预测出了风向,从而赢得了赤壁之战。这样的例子在中国古代还有很多。虽然诸葛亮、比恩和德国队的教练团队并没有真正地使用大数据,但是他们运用的这种分析方式以及对数据作用的理解,非常值得我们学习。
在这个大数据爆炸的时代,收集数据的方式在日益革新。然而,我们所能获取的数据量,已经远远超过了我们能够分析的上限。依据现有的分析手段以及思考方式,其实根本无法将大数据这座大山整个点石成金。我在美国接触过的所有大数据分析公司所能做的,也不过就是将这山上的微小石子变成金子而已。我们每天面对着2940亿封邮件、200万个帖子,到底能够运用多少?数据的单位已经从TB上升到PB、从PB上升到EB、又从EB上升到了ZB。再向上,还有YB、BB、NB、DB,数据只会随着信息技术的发展不断地爆炸式地增长。
那么问题就是,我们应该用这庞大的数据库来做些什么呢?
这个问题,即使是最尖端的美国信息技术学家也无法准确地给出答案。实际上单从商业来讲,美国管理学大师彼得德鲁克也许给我们指出了一些方向。作为现代管理学之父,德鲁克的思想深深地影响着一代又一代的美国营 销管理专家。在与前Saks Fifth Avenue(萨克斯第五大道精品百货)的营 销顾问John O’Malley(约翰奥麦利)的交流中,他反复提到了德鲁克的思想对于现在商业的深刻影响。我们共同认为,德鲁克的思想,即使放在这个大数据的时代依然是超前的。德鲁克认为不论是B2B还是B2C的商业模式,所有企业都需要清楚地认识到,我们到底在哪一个行业里以及我们到底能够为顾客提供什么?这看似简单的问题,却难倒了全球百分之九十以上的公司。大数据的出现,为我们回答这两个问题提供了工具。
那么有了趁手的工具,我们该怎么去运用呢?
德鲁克的思想贯穿了整个商业社会的所有经济行为,而从这之中延展开的却是对行行业业、对整个社会现象的思考和总结。实际上这种思考和总结与中国优秀的传统思想具有很多暗合之处。我在2014年曾经写过一篇论文,专门探讨了德鲁克的思想与中国传统思想的契合。在文章中我提到,这种人类伟大的智慧,是对于整个人类社会的运行规律的探究。不论是西方亦或是东方的优秀思想,均是沿着对宇宙、社会、人生的规律进行探究。大数据的出现和发展,为整个人类带来的财富远远超越了商业价值。而我们生存在这个大数据时代,想要真正的理解并运用大数据,不去对人类最高的智慧进行探究,是必定无法驾驭这庞大的数据的。
中国传统思想讲格物致知。对大数据的研究分析即是格物。这种格物的层次,已经远远地突破了人类世界发展几千年的总和。那么,对于大数据的应用即是致知。这种致知的程度,也会比大数据出现之前更加准确、细微。然而操作分析大数据的人所拥有的智慧,将是决定这种格物致知是否能够产生最大效用的关键。
格大数据之物,致点石成金之知。笔已经放在这里,只看你能否写出那包藏财富的神秘的小纸条。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07