京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据/SaaS/物联网,2015年的风口在哪里
雷军说,站在台风口上,一头猪都能飞起来。找准市场的潜在热点,你成功的几率就会大增。在这样的市场里更容易招到好的人才、有更多露面的机会,更容易融资,也更容易退出。那么2015年的风口在哪里呢?我们来听听Elad Gil的看法。
初创企业退出的平均时限是 7 年。而站在风口上则可以大大缩短退出时间。1990 年代末,由于互联网热潮的兴起,被收购或 IPO 的时间仅仅是 2、3 年。最快的退出方式是并购。
而要想成功 IPO 通常需要有 5000 万美元的收入,还要有几个季度的盈利。不过如果处在风口的话,对盈利的要求也许就没那么高,甚至还可以宽松一阵子(比方说大数据热潮下 Hortonworks 的 IPO 就是例子)。
风能刮多久?
历史资料表明,那些挂起的风球有 50% 的概率是假预报。例子包括 1980 年代的第一波人工智能热,2000 年代早期的纳米技术热,以及 2000 年代中期的清洁技术和 2000 年代晚期的地理定位热。
而成功刮起来的风包括社交网络(2000 年代中期—Facebook、Twitter、LinkedIn)以及移动社交(2010 年代早期—WhatsApp、Instagram)。
那么 2015 年可能的风口在哪里呢?
2015年的风口
1、飓风—可能催生大型独立公司和众多收购的市场
大数据
所谓的“大数据”可细分为四个领域:
(1)大规模数据处理(Hadoop、Spark 等)
(2)智能数据。如分析性工具获数据科学家使用的工具。
(3)数据中心基础设施(有时归为“大数据”)。如 Mesos(及 Mesosphere)。
(4)垂直数据应用(如针对医保索赔的数据存储和分析)
这个市场会创造出独立上市公司,也会产生大量收购。潜在的收割者包括传统的企业巨头(HP、IBM 等),以及该领域有流通股或市值很大的早期公司(如 Cloudera,、Hortonworks)等。此外,医疗保健方面(及其他 2、3 个关键领域)的垂直型数据公司可能会被更加专业的收购者收购(如 UnitedHealth)。
SaaS(软件即服务—含API/开发者工具)
如最近一些公司(Zenefits 和 Slack)爆发式增长所表明那样,SaaS 在企业协作、人力资源管理等方面还有着非常多的机会。
这个领域未来几年内每年会冒出 1、2 家非常大的公司(或退出)不足为奇。关键是找到差异化的有机分发模式(Slack)或业务模式(Zenefits)。
为了避免市场过于细化,此处将 API/ 开发者工具也归为一类。把许多服务做成 API 是行得通的,因为传统上其执行方式过于笨重。Stripe 和 Twilio 就是这类趋势的两个典范,Checkr.io 则是更近一点的例子。
基因组技术
基因组学尚未进入主流炒作周期。但由于市场发生的根本性转变,到了 2015 末 2016 初有可能会成为投资热点。这可能会催生大片的未来投资,也可能产生 1 亿至数十亿美元的退出。这一波基因组浪潮可能会推出独立的基因组软件公司(IBM、Oracle、Google、Illumina 等是可能的买家),也会出现更多的传统以生物学为中心的基因组学公司(医药与传统生物科技公司为买家)。这个领域会诞生少量大型的上市公司。
2、狂风—会有许多收购但是否会出独立公司不太清楚人工智能(AI)
有两类 AI 公司:
(1) 开发通用型 AI 或“一般 AI 平台”的公司
(2) 应用 AI 解决非常专门的问题或客户需求的公司(如网页的机器翻译或筛选病例样本)
第一类公司会被 Google、Facebook 等少数公司以人才收购的方式收购掉。第二类公司可能会诞生少量大型的独立公司。我更看好第二类,因为此类公司真正创造价值。不过,如果你主要对快速退出感兴趣的话,第一类公司会卖得更快,1 到 4 年就能以很好的估值卖给 Google 等试图囤积机器学习人才的公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27