
大数据时代,不止要数据,解密行业分析师如何写好研究报告,写研究报告,是分析师的本职工作,投资者与分析师接触,通常都从小小一个PDF文件开始。作为行业小兵,笔者根据自己的经验教训,梳理了写好研究报告的几处心得,与朋友们做个交流。
跟做产品类似,写报告也需要认真研究,从客户的需求特性、产业与公司特点、自身储备三个侧面精心设计,从而产生出一个点子、原型或者框架。尤其是深 度报告,一定要从一个好的构思开始。什么是好的点子?可以是独占的数据,可以是从未被业内使用的框架,也可以是独特的视角或者与众不同的结论,甚至可以是 批驳流行的错误观点。总之,在广泛吸收和梳理发酵的前期准备中,一个好点子能够点燃写作的激情,是动笔的原始驱动力。
对分析师来说,客观专业是最基础的要求。可惜,当前的证券界多数都不太合格。为了自己或所在机构的利益,多少卖方在上涨的时候死命鼓吹,对公司与行业的致命投资风险只字不提,最终给轻信的投资者造成巨大损失。
所谓客观,就是不要主观,要辩证、全面、理性。世界上不存在完美的公司,认识和观点会有分歧,不同时点优势也会变成劣势。比如高杠杆在周期向好的时 候放大增速,而在衰退中加速下滑。制造业的垂直整合,银行的活期存款占比高,消费品类的渠道扩张导致的压货,等等。当前的竞争优势和高增长驱动力,很可能 也是未来走下坡路的催化剂。针对行业特点,我们给出三个建议:
第一,逻辑论证和推演要扎实。要有可靠的数据事实支撑,要经得起证券界和实业界的推敲检验,跟公司/行业实际发展吻合,才有说服力。
第二,认真对待风险提示。对投资风险,多数分析师习惯了点到为止。实际上风险提示也是非常考究研究员功底的地 方。认真细致地分析公司面临的不确定性,哪些是外部风险(建议跟踪哪些变量),哪些是商业模式内生的经营风险等等,以帮助读者建立关于风险的认知地图。分 析师没有预知未来的水晶球,因此充分而可信地揭示风险既可体现专业素质,也能为将来留下辩解的余地。
第三,建立Big Picture。专业的投资经理每天要看那么多报告,他们多数对具体的行业/公司了解不是那么细致,也不需要太多细节。因此建议在报告头或尾部将大的产业环境、竞争结构、投资观点等做一鸟瞰,以帮助读者理解全局。
这点卖方同行一定深有同感。差异化,就是关注那些未被满足的信息需求,关注那些同行做的不太出色而自身正好有优势的领域,关注全新的领域夺取资本市场话语权。
如果对手的行业投资逻辑做的扎实,我可以搞草根调研。
市场悲观时,要注意跟踪数据中的乐观迹象及时提醒;市场狂热时,不妨梳理下产业周期或对高估值、可持续性的担忧。原因有三:第一,资本市场羊群效应 明显,预期一致的时候往往就是拐点。第二,只有与众不同,只有差异化,才能被人记住,才能在投资观点的红海中胜出。最后,始终对事物的对立面保持开放和谨 慎,也不易犯错。
人的认识都是先感性再理性的,感性和情绪是认识过程的背景,无法消除。这体现在研究报告上,就是必须极端重视形式,重视体验。苹果的成功就是实例,诺基亚抗摔的时代已经过去了。要站在提高客户阅读体验的高度,全方位提高形式。包括但不限于:
(1)字体、用词与色彩:字体不超过两种,除图表外基础色调也不要超过三种。用词尽量准确、简洁,可有可无的口语化衔接词一律精简,牢记少即是多。
(2)图表:用红/蓝高亮、排序或加粗来引导读者注意。
(3)逻辑结构。常用的结构范式包括:提出问题-分析问题-给出建议,树立反派-批驳-总结,伟大意义-现实需求-方案建议,历史-现状-未来,行业-公司-结论,等等,可自己总结,自由发挥。也可参考麦肯锡系列的结构化思考。
(4)投资逻辑的形象化展示。如果主逻辑中的变量过多,可尝试画图以展示相互作用。记住,一张图,胜过千言万语。
(5)尊重读者认知过程。人们对事物的认识总是由浅入深、由模糊到清晰,分析过程应尊重这一认知发展过程。包括但不限于:人们都喜新厌旧,喜欢被认同,喜欢秩序而非混乱,喜欢态度明确,喜欢简洁清晰有力的结论而非拖沓软弱和模棱两可,等等。
(6)制造阅读情绪的波动。好莱坞大片成功的原因之一是能够以光怪陆离的视声学效果、巧妙的情节设计和剪辑,引 导甚至掌控观众的情绪波动,从而实现预期效果。优秀的研究报告应该像电影、演讲那样给读者带来愉快的情绪体验。报告中不时地制造矛盾、偶尔的诘问、反派观 点的对比和批判,富有洞察力的个人创见的集中展示等,制造丰富的情绪体验包括疑惑解惑好奇惊喜等,从而给读者留下印象。
形式上的技巧有很多,关键的一条是,要像大导演炮制商业大片一样关注体验,关注视觉和心理效果。将分析中的亮点、卖点和心理冲击点设计为报告的高潮,并在之前逐步铺垫和引导。具体的,可以看看版式设计、色彩心理学、设计原理和iPhone设计规范等,一定会有很多启发。
如同股票的上涨需要超预期的基本面做催化剂一样,一份报告要想获得读者的芳心,也必须超出预期。超预期的第一步是调查当前业界同行的研究水平。客户 对该股与该行业的认识和观点,有无重大偏见,相关持仓,当前的心理状态,有无潜在的研究需求和可能的认知盲点,等等。对客户和同行了解越全面深刻,就越知 道怎么写。第二,不要略超预期,要远超预期。如果你只比客户水平高一点点,客户也不会有多深印象。因为他会想:我稍作努力也能达到这个水准。但如果你超越 客户2-3步,认识水平高出市场平均2个层次,客户就会感受到认知差距和冲击力,敬佩之情铁定油然而生。这才是真正的超预期。如同上市公司,业绩增速预期 是20%,25%只是略超预期,而30%甚至35%就是远超预期。
证券研究是个极其苦逼的职业,工作量无穷大,被众多的上市公司忽悠,被股价涨跌折腾,被每日层出不穷的各种新闻公告折腾,频繁的出差,加上工作中痛 苦的信息收集和发酵过程,痛苦的不断蜕变过程,被自己内心的各种魔鬼折腾。活着不容易,能发出点有价值的声音更不容易。没有人喜欢僵化死板的八股文。我们 需要追求卓越的强烈激情,来激发那灵光一现的洞察力。读者都希望被有价值的观点和强大的投资逻辑所征服,被作者的激情、热爱所感染。时光流逝行业变迁,所 有的逻辑和观点终将湮灭,但当初那个充满激情的分析师形象,一定还会留在读者的心中。研究需要激情,研究需要玩命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29