
大数据时代对传媒经济研究的影响(2)_数据分析师
4.研究对象
在微观经济学研究中,研究对象是个体的企业、家庭或个人,研究者通过对单个企业或个人的生产、消费等行为的分析,考察影响他们决策的各种因素。在传媒经济学研究中,媒体、受众也是作为个体存在的。这种研究有两方面缺陷,一是个体的消费行为始终处在黑箱中,我们不知道个体是如何做出消费行为决策的。二是研究只见树木不见森林,无法从对个体的研究中获知关于总体的状况,而总体状况具有极大的研究价值和应用价值。
大数据可以在这两方面做出改进,首先,借助于大数据技术,研究者可以对受众的媒介接触行为和媒介消费行为进行准确的追踪分析,掌握受众在每时每刻的媒介接触和消费行为。另外,大数据可以使研究者获知受众整体的媒介接触和消费情况,进而对受众的媒介接触和消费趋势做出预测。
5.研究主体
大数据对传媒经济研究者也提出了挑战,在大数据时代,研究者需要对大数据有深刻的理解和把握,充分认识大数据对传媒经济研究带来的深远影响,学会从大数据的研究范式出发思考问题。另外,研究者也需要掌握数据分析的方法和工具,学会利用大数据分析工具对传媒经济学的各类问题进行研究。同时,跨学科的学术合作与学术交流也变得更加重要,任何单一学科的视角和方法都难以对大数据环境下的传媒经济现象做出充分的解释。只有从传播学、经济学、社会学等多种理论视角进行跨学科考察,才能对大数据环境下的传媒经济问题做出深入的研究。
大数据时代传媒经济研究的创新
大数据对传媒经济学研究提出了相当大的挑战,在大数据环境下,传媒经济研究至少可以在以下四个方面进行创新:
1.受众行为分析
受众的媒介接触和媒介消费行为,始终是传媒经济研究的核心问题。在小数据时代,很难准确全面地了解受众的媒介接触和媒介消费行为,无论是传统的入户调查,还是受众的自我报告,都存在两方面问题:一是样本量太小,从样本中得出的结论不具有推广性;二是受众在接受调查时经常会给出有偏向的答案,由于第三者效应的存在,受众总会有美化自身行为的可能性。这使得对受众媒介接触和媒介消费行为的研究变得非常困难。
大数据技术能够对受众的媒介接触和媒介消费行为进行实时分析,比如受众在网络上点击了哪些页面、停留了多长时间、链接到哪些网站、购买了什么商品、发表了怎样的评论等信息都可以被后台服务器保留,通过分析受众的个人接触信息,可以准确把握受众媒介接触行为的特点和模式,进而对受众进行有针对性的营销。
2.市场趋势预测
大数据技术可以对市场趋势做出准确预测,舍恩伯格认为,大数据的核心就是预测,它是把数学算法运用到海量数据上来预测事情发生的可能性。一个著名的例子是Farecast票价预测工具,这个工具通过对近十万亿条机票价格数据进行分析,预测美国国内航班机票价格,其预测的精准程度达到75%,每位使用该系统的消费者每张机票可节约50美元。
3.广告及营销精准度研究
在小数据时代,广告投放呈现出撒胡椒面式的粗放形态,广告的投资回报率很低,商品的营销手段也较为粗糙,难以对受众进行一对一的精准营销。大数据环境下,通过对每位消费者的消费习惯和消费模式数据进行统计分析,可以进行精准的广告投放和商品营销,提高广告和营销的精准度。
比如,亚马逊运用数据挖掘技术,通过分析用户的浏览、收藏、购买、评论及其他用户的反馈等数据,预测每位消费者可能感兴趣的内容,将其推荐给消费者。亚马逊提出,在最理想的情况下,亚马逊只会推荐一本书,而这本书就是消费者将要购买的那本书。
4.盈利模式创新研究
大数据环境下,媒体的盈利模式也需要做出调整。在读者量不断下滑、广告市场被新兴媒体分流的现实背景下,传统的二次售卖模式难以为继。传统媒体必须创新盈利模式,利用大数据技术带来的机会,整合数据资源,寻找新的盈利增长点,实现自身的逆转。传媒盈利模式的创新也是传媒经济研究的重要问题之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11