
大数据时代对传媒经济研究的影响(1)_数据分析师
自2012年开始,大数据开始成为包括新闻传播学在内的学术界共同讨论的热点话题。2008年,《自然》杂志组织推出了大数据专辑,2011年,《科学》杂志也推出大数据研究专刊。麦肯锡咨询公司在2011年发布了大数据研究专题报告《大数据:下一代创新、竞争和生产的前沿》,联合国在2012年也发布了“大数据的挑战和机遇”的调查报告。在大数据趋势的推动下,奥巴马政府在2012年推出了“大数据研究与开发计划”,该计划投资额超过2亿美元。欧盟也于2011年提出了数据开放战略,要求每年增加400亿欧元的公共数据,并在2017年实现利润1000亿欧元。
大数据对传媒业产生了革命性的影响,其实,不仅传媒行业会受到大数据带来的影响,大数据也对传媒学术研究产生巨大的冲击和挑战。目前已经有学者开始就大数据对传媒研究的影响进行了初步分析,但总体而言,新闻传播学界对大数据的研究偏重于现象描述和情况介绍,对大数据给学术研究带来的挑战和学术创新问题的研究却较少。基于此,本文以传媒经济研究为对象,考察大数据对传媒经济研究带来的挑战,为大数据背景下传媒经济研究的发展提供行动路线图。
大数据对传媒经济研究带来的挑战
传媒经济学的理论背景来自经济学,包括微观经济学理论、产业经济学理论、制度经济学理论等。有学者认为,大数据在研究对象、研究工具、研究理论和研究方法等方面对传统经济学形成了冲击,由此提出大数据经济学(Big Data Economics)概念,认为应该运用大数据思想对传统经济学进行深化研究。在传媒经济学研究方面,大数据在研究范式、研究理论、研究方法、研究工具以及研究对象等方面都会对既有研究产生冲击,传媒经济学研究面临着理论创新的挑战。
1.研究范式
按照库恩的界定,范式是一个学术群体中大部分成员共同认可的一整套前提假设,是学术共同体公认并共享的世界观。传媒经济学基本遵循着新古典主义经济学的研究范式,新古典主义经济学的核心是理性人假设。理性人假设认为人是追求自身效用最大化的理性个体,在制定每一项决策时都会严格按照成本收益比进行考量和计算。但批评者指出,完全理性假设在现实中并不存在。在现实中,一方面,搜索信息需要花费巨大的时间成本和精力;另一方面,人们缺乏分析和处理巨量信息的工具和方法。因此,人们只会搜索有限信息,以此作为决策的依据,这就是有限理性假设。
有限理性假设比完全理性假设更加接近现实,但这两种假设有着共同的前提,即个体对信息的搜索和处理需要巨大的成本。因而,决定采用完全理性假设还是有限理性假设时,主要是比较获取信息的成本和从信息中得到的收益:当信息收益大于信息成本时,继续搜寻信息,逼近完全理性假设;当信息成本等于或大于信息收益时,停止信息搜索,按照有限理性假设采取决策。
在大数据环境下,理性假设的前提遇到了挑战,大数据技术极大地减少了受众搜索信息的成本,受众可以轻而易举地获取决策所需的各种信息,并利用数据处理技术对信息的收益进行计算,在此基础上作出决策,这使得有限理性范式失去了解释力。同时,信息成本和交易成本的大幅下降,使网络空间出现了许多新的组织形态和交易形式,如以分享、合作为主题的维基百科、开放源代码、网络共享等,这些新的组织形式无法用理性范式进行解释,如果从理性的角度计算成本收益关系,那么人们没有动力进行网络分享与合作。然而,这种“无组织的组织力量”在今天的互联网世界越来越常见。这些大数据时代的新现象很难用理性范式进行解释,我们需要用新的传媒经济学研究范式解释这些行为和现象。
2.研究理论
在研究理论上,大数据时代的传媒经济研究不仅需要经济学理论,也需要社会学理论、网络科学理论等其他学科理论。传统的经济学理论中,个体脱离了所属的社会结构和社会群体,研究者忽视了社会关系、人际传播、社会结构因素对个体的影响,脱离个体所镶嵌的社会情境因素来考察个体,犯了“低度社会化”的错误。在传媒经济理论中,无论是生产者还是消费者,他们的生产行为和消费行为都是黑箱,我们不知道生产者和消费者是如何做出生产和消费决策的,哪些因素产生影响、如何影响等一系列问题都处在黑箱中。
在大数据的帮助下,研究者可以借助于社会学理论和社会网络研究理论,把个体纳入到一定的社会结构和社会情境中,考察个体镶嵌其中的社会关系因素如何影响个体的媒介接触和媒介消费行为,研究影响个体行为的各种因素及其影响机制,揭开人们媒介接触和媒介消费行为的黑箱,从而发展出能够揭示传媒经济行为一般规律的理论。
3.研究工具和方法
传媒经济学主要的研究方法包括抽样调查、内容分析、假设检验、实验研究等,尽管这些方法有其优点,但它们的缺点也是显而易见的,这些传统方法都无法对海量数据进行分析,在大数据面前,这些传统方法基本是无能为力的。
以抽样调查方法来说,在大数据来临之前,受制于研究条件和数据可得性,研究者只能对有限的数据进行抽样,通过对有限样本的分析推断总体的状况。抽样分析的前提是所抽取的样本能够代表总体,但在研究中很难使样本能够完全代表总体,样本与总体总会存在一定的误差,抽样调查的价值也因此打折扣。在大数据时代,可以直接对总体数据进行分析,而无需通过抽样调查来估计总体状况。同样,内容分析法也是基于抽样分析,通过抽取样本对媒介内容进行研究。实验法也是对少数受试者施加试验刺激,通过与对照组进行比较研究,观察实验刺激产生的效果。这些传统方法都是小数据时代处理信息所采用的方法,并不适用于大数据环境,大数据需要学者设计运用新的研究方法与研究工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15