
福特公司CEO Mark Fields在CES 2015展会上的主题演讲可谓光芒四射,他阐述了这家老牌汽车厂商如何在传统业务之外、以数据分析为契机取得一系列辉煌成就。换句话来说,福特为我们树立了良好的典型,证明了如今每一家企业都可以转化为技术厂商。
福特所面临的挑战在于通过多种不同类型的移动技术实验从车辆及人员身上收集数据,而后以此为基础考量怎样构建起新的业务方案。在可能性方面,Fields谈到了车辆质量、保险费用、汽车共享、交通分析以及社会问题等潜在发展方向。
“我们的路线图不能仅仅包含智能化汽车,还应该囊括智能化道路与智能化城市,”Fields指出。
福特公司CEO Fields探讨汽车制造商在大数据方面的实验性尝试福特公司公布的计划包括以下几点:
1. 短期之内利用25个实验性项目收集包括汽车共享、车辆情报、驾驶模式、停车应用以及保险等方面在内的各类数据。这些数据均来源于消费者及志愿者。福特公司希望能够以更具前瞻性的视角进行项目规划,而不仅满足于人们早已听说的机器人汽车等领域——虽然福特在这方面也制定了庞大的发展规划——这一切都将以数据作为基础以及资源。福特公司希望“在未来十年及其后构建起一套全新的交通模式与移动解决方案。”
2. 再来看需要实现的中期目标。以上述数据为起点,福特公司计划进一步扩大自动化汽车与相关应用程序的开发力度,从而保证其产品能够在多种交通系统之间应对自如。
3. 长期发展目标则是在城市移动技术领域占得优势地位。福特公司希望能够切实将各类交通系统加以整合,并将自动化功能推广至普通民众。不出意外,福特的实验项目选择了印度与中国作为实验地。福特的胜利则代表着新兴市场与中产阶级购车群体的崛起。
“此类信息能够帮助我们了解人们如何活动,并以绝大多数客户无法企及的宏观高度对其中的模式加以剖析,”Fields解释道。“今天的汽车已经能够产生大量数据,其每小时信息生成量就已经超过了25GB。”
围绕这一发展路线图的展开的多项实验为我们在多个方面带来值得关注的启示。在一项实验中,福特公司利用由车载传感装置收集到的数据研究总计两百名志愿员工的驾驶习惯,旨在对车辆作出针对性优化。另一项实验则是汇总大量评估数据,从而衡量驾驶者在长时间内的安全行驶状况、最终达到降低保险费用的目标。福特方面还从其它多种角度出发作出尝试,包括车辆共享以及便捷停车等等。
福特的尝试与努力能够带来以下收益:
• 在硬件产品制造商之外为福特谋得新的市场定位。
• 将该公司提升为一家服务供应商。
• 为将福特塑造成值得信赖的品牌构建良性发展循环。
• 随着时间推移带来额外营收资金流。也许福特能够凭借此类数据帮助保险企业对驾驶员的过往记录作出评估,而后者需要向福特方面支付数据使用费。
Fields强调称,福特公司的信息收集项目皆为可选方案,而参与其中的客户则能够持续通过相关数据获取到服务与实际收益。
但接下来才是最麻烦的问题……
我们不能指责福特的野心过于激进。这家汽车制造商领先于整个业界推出了其Sync系统,同时已经打造出了其信息系统的第三个版本。
但福特很明显并不满足于单纯将着眼点放在车辆范畴之内。福特公司希望成为汽车行业中的苹果,他们打算出售的并不仅仅是硬件或者软件,而是在硬件与软件之间所衍生出的集成化与智能化成果。
美中不足的是,福特公司需要面临的数据总量过于庞大、很可能出现超载状况。TechRepublic的Jason Hiner去年撰写了一篇题为《福特如何在转型为软件供应商的道路上前行》的文章。Hiner在文中写道:
福特在收集并处理大数据、并利用其增强自身业务方面一直走在整个行业的前沿。不过就目前来看,福特希望能够像谷歌、Amazon以及Facebook等纯技术厂商那样利用同样的方式运用大数据——旨在对用户体验进行简化与定制。
虽然福特有能力构建起数据分析所必需的后端系统以及工具,但真正的难点在于从问题惊人的信息池当中汇总出分析结论。福特需要对企业文化加以转变,并在招揽数据科学家人才的同时酝酿出潜在的新型解决方案。毕竟客户与车辆之间的关系是种内在的情绪化因素,此类人为因素的介入可能会让驾驶者与车辆产生意料之外的关联。
福特方面未来将很可能需要考量“富数据”在实验当中所扮演的重要角色。TechRepublic的Mary Shacklett在报道中表示:
富数据的深层次概念在于,我们并不能始终依靠数值计算与算法来对客户的全方位体验加以概括,或者是将任何人为活动乃至可能出现的意料外因素囊括在其中。
换句话来说,福特公司的既定目标实际上是在对人类行为进行统计与分析。人们在找不到停车位时,会做出怎样的反应?福特该如何对此类反应作出预计?而这些数据对于车辆设计工作又意味着什么?
总结陈词:福特公司面临的挑战是为大数据与分析同用户体验之间找到一条沟通的纽带。谷歌、Amazon乃至Facebook都在致力于改善用户体验,这项工作与汽车设计及制造可以说是风马牛不相及。考虑到这一点,我们期待看到福特在未来几年中会如何一步步推进自己的这项宏伟发展目标。
End.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19