
福特公司CEO Mark Fields在CES 2015展会上的主题演讲可谓光芒四射,他阐述了这家老牌汽车厂商如何在传统业务之外、以数据分析为契机取得一系列辉煌成就。换句话来说,福特为我们树立了良好的典型,证明了如今每一家企业都可以转化为技术厂商。
福特所面临的挑战在于通过多种不同类型的移动技术实验从车辆及人员身上收集数据,而后以此为基础考量怎样构建起新的业务方案。在可能性方面,Fields谈到了车辆质量、保险费用、汽车共享、交通分析以及社会问题等潜在发展方向。
“我们的路线图不能仅仅包含智能化汽车,还应该囊括智能化道路与智能化城市,”Fields指出。
福特公司CEO Fields探讨汽车制造商在大数据方面的实验性尝试福特公司公布的计划包括以下几点:
1. 短期之内利用25个实验性项目收集包括汽车共享、车辆情报、驾驶模式、停车应用以及保险等方面在内的各类数据。这些数据均来源于消费者及志愿者。福特公司希望能够以更具前瞻性的视角进行项目规划,而不仅满足于人们早已听说的机器人汽车等领域——虽然福特在这方面也制定了庞大的发展规划——这一切都将以数据作为基础以及资源。福特公司希望“在未来十年及其后构建起一套全新的交通模式与移动解决方案。”
2. 再来看需要实现的中期目标。以上述数据为起点,福特公司计划进一步扩大自动化汽车与相关应用程序的开发力度,从而保证其产品能够在多种交通系统之间应对自如。
3. 长期发展目标则是在城市移动技术领域占得优势地位。福特公司希望能够切实将各类交通系统加以整合,并将自动化功能推广至普通民众。不出意外,福特的实验项目选择了印度与中国作为实验地。福特的胜利则代表着新兴市场与中产阶级购车群体的崛起。
“此类信息能够帮助我们了解人们如何活动,并以绝大多数客户无法企及的宏观高度对其中的模式加以剖析,”Fields解释道。“今天的汽车已经能够产生大量数据,其每小时信息生成量就已经超过了25GB。”
围绕这一发展路线图的展开的多项实验为我们在多个方面带来值得关注的启示。在一项实验中,福特公司利用由车载传感装置收集到的数据研究总计两百名志愿员工的驾驶习惯,旨在对车辆作出针对性优化。另一项实验则是汇总大量评估数据,从而衡量驾驶者在长时间内的安全行驶状况、最终达到降低保险费用的目标。福特方面还从其它多种角度出发作出尝试,包括车辆共享以及便捷停车等等。
福特的尝试与努力能够带来以下收益:
• 在硬件产品制造商之外为福特谋得新的市场定位。
• 将该公司提升为一家服务供应商。
• 为将福特塑造成值得信赖的品牌构建良性发展循环。
• 随着时间推移带来额外营收资金流。也许福特能够凭借此类数据帮助保险企业对驾驶员的过往记录作出评估,而后者需要向福特方面支付数据使用费。
Fields强调称,福特公司的信息收集项目皆为可选方案,而参与其中的客户则能够持续通过相关数据获取到服务与实际收益。
但接下来才是最麻烦的问题……
我们不能指责福特的野心过于激进。这家汽车制造商领先于整个业界推出了其Sync系统,同时已经打造出了其信息系统的第三个版本。
但福特很明显并不满足于单纯将着眼点放在车辆范畴之内。福特公司希望成为汽车行业中的苹果,他们打算出售的并不仅仅是硬件或者软件,而是在硬件与软件之间所衍生出的集成化与智能化成果。
美中不足的是,福特公司需要面临的数据总量过于庞大、很可能出现超载状况。TechRepublic的Jason Hiner去年撰写了一篇题为《福特如何在转型为软件供应商的道路上前行》的文章。Hiner在文中写道:
福特在收集并处理大数据、并利用其增强自身业务方面一直走在整个行业的前沿。不过就目前来看,福特希望能够像谷歌、Amazon以及Facebook等纯技术厂商那样利用同样的方式运用大数据——旨在对用户体验进行简化与定制。
虽然福特有能力构建起数据分析所必需的后端系统以及工具,但真正的难点在于从问题惊人的信息池当中汇总出分析结论。福特需要对企业文化加以转变,并在招揽数据科学家人才的同时酝酿出潜在的新型解决方案。毕竟客户与车辆之间的关系是种内在的情绪化因素,此类人为因素的介入可能会让驾驶者与车辆产生意料之外的关联。
福特方面未来将很可能需要考量“富数据”在实验当中所扮演的重要角色。TechRepublic的Mary Shacklett在报道中表示:
富数据的深层次概念在于,我们并不能始终依靠数值计算与算法来对客户的全方位体验加以概括,或者是将任何人为活动乃至可能出现的意料外因素囊括在其中。
换句话来说,福特公司的既定目标实际上是在对人类行为进行统计与分析。人们在找不到停车位时,会做出怎样的反应?福特该如何对此类反应作出预计?而这些数据对于车辆设计工作又意味着什么?
总结陈词:福特公司面临的挑战是为大数据与分析同用户体验之间找到一条沟通的纽带。谷歌、Amazon乃至Facebook都在致力于改善用户体验,这项工作与汽车设计及制造可以说是风马牛不相及。考虑到这一点,我们期待看到福特在未来几年中会如何一步步推进自己的这项宏伟发展目标。
End.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07