网站数据分析:那些难以实现的细分_数据分析师
如果你从事网站分析相关工作,那么你一定用过或听说过网站分析工具中的细分(Segment)功能。不得不说,用好Segment是一名合格的网站分析师必备的技能。关于Segment的重要性,恐怕无需我多言了,借用Sidney的一句话——“无细分,毋宁死!”
However,这次想跟大家分享的,是那些我认为难以实现的细分。这里需要强调下,只是“我认为”,并未向任何官方证实我的这些想法,因此请大家尽管质疑,尽管拍砖。
在用具体的案例来说明问题之前,先简单回顾下细分是如何工作的,下面引用一段Omniture官方文档中的内容,
Segmentation works by scanning through every single hit within the time period selected, checking to see if that image request matches your segmentation rules.
1. If it matches, then that hit will be part of your segment (along with additional data depending on the bucket)
2. If it does not match, the image request is thrown away and treated as if it didn’t exist in the context of the specific report you are viewing
这里要注意下,虽然平时如果你说“把Search Engine按Keyword细分”,大家都明白你的意思,但实际上,很可能潜移默化地就把多维度关联和细分两者的概念混淆了。
好了,废话不多说,直接进入正题。
在同一个会话(Session)中,用户可能对Page A产生了X个Page View(s),那么,是否可以通过细分,得到可以满足下表的数据?
Page Views of Page A | Visits |
0(未查看过Page A的访问) | |
1(查看过Page A 1次的访问) | |
2(查看过Page A 2次的访问) | |
… | |
X(查看过Page A X次的访问) |
我们先尝试第一项,0 Page Views of Page A(未查看过Page A的访问),
很容易地,我们给出了细分规则,即在所有的数据中筛选出排除了访问中访问过Page A的访问(似乎稍有拗口,在用文字表达细分规则的时候我总感觉很吃力,语言难以规范,请见谅了)。也就是说,如果某次访问中包含了Page = Page A的hit,那么,这次访问将不在细分后的数据集中。
事实上,得到这个数据如果不通过细分来实现,也是非常容易,用Total Visits – Visits of Page A,得到的结果便是完全没有访问过Page A的Visits了。
细分后,我们来看看Page A的数据情况,顺便验证下细分是否正确,
(图片已经PS处理,数据为模拟数据)
如上图所示,细分后得到的Total Visits 是9,310,750,而未细分的话,得到的Total Visits是10,041,929,两者之差正好是未细分时Page A的Visits 731,179,因此,细分成功。
顺便提一下,不要试图用下面的规则来得到这个数据,也不要试图把Visit Container修改成Page View Container,想一想为什么吧,我就先不多说了。
接着,我们继续尝试第二项任务,即细分出“看且仅看了Page A 1次的访问”。
我们可能试图用以下规则来实现,
乍一看,还真像那么回事,我们先直接看看结果如何,
(图片已经PS处理,数据为模拟数据)
有没有发现,我们所期望的“看且仅看了Page A 1次的访问”,其结果竟然与Page A Single Page Visits(访问且仅访问了Page A的访问数量)相同,这说明我们的规则:Page Views equals 1,作用于整个visit,限定了符合规则的访问必须仅包含1个Page View,而并非如我们所愿,用于限定Page A的Page Views为1 。
到这里,我想实验可以结束了,之后的任务也同样无法完成了。由于近两年较少使用GA,因此我并不确定GA中是否可以实现这样的细分,但是对于Omniture,我有至少99%的Confidence说这个细分是无法实现的(经过针对性的部署的除外)。
还没完,来试试总结出一个更具普遍性的结论:我们可以细分出某个特定变量发生过特定次数的访问/访客,但无法细分出某个特定变量的某个特定值发生过特定次数的访问/访客。
用这个结论来解释这个案例的话,那就是我们可以细分出Page变量发生过X次(Page Views = X)的访问,但无法细分出Page变量的值为A且发生过X次Page=A的访问。
这个案例就到这里结束了,如果你有任何不同意见,请尽管拍砖,我虽然很坚信这个细分确实无法实现,但我更希望我的想法是错误的。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18