京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析:那些难以实现的细分_数据分析师
如果你从事网站分析相关工作,那么你一定用过或听说过网站分析工具中的细分(Segment)功能。不得不说,用好Segment是一名合格的网站分析师必备的技能。关于Segment的重要性,恐怕无需我多言了,借用Sidney的一句话——“无细分,毋宁死!”
However,这次想跟大家分享的,是那些我认为难以实现的细分。这里需要强调下,只是“我认为”,并未向任何官方证实我的这些想法,因此请大家尽管质疑,尽管拍砖。
在用具体的案例来说明问题之前,先简单回顾下细分是如何工作的,下面引用一段Omniture官方文档中的内容,
Segmentation works by scanning through every single hit within the time period selected, checking to see if that image request matches your segmentation rules.
1. If it matches, then that hit will be part of your segment (along with additional data depending on the bucket)
2. If it does not match, the image request is thrown away and treated as if it didn’t exist in the context of the specific report you are viewing
这里要注意下,虽然平时如果你说“把Search Engine按Keyword细分”,大家都明白你的意思,但实际上,很可能潜移默化地就把多维度关联和细分两者的概念混淆了。
好了,废话不多说,直接进入正题。
在同一个会话(Session)中,用户可能对Page A产生了X个Page View(s),那么,是否可以通过细分,得到可以满足下表的数据?
| Page Views of Page A | Visits |
| 0(未查看过Page A的访问) | |
| 1(查看过Page A 1次的访问) | |
| 2(查看过Page A 2次的访问) | |
| … | |
| X(查看过Page A X次的访问) |
我们先尝试第一项,0 Page Views of Page A(未查看过Page A的访问),
很容易地,我们给出了细分规则,即在所有的数据中筛选出排除了访问中访问过Page A的访问(似乎稍有拗口,在用文字表达细分规则的时候我总感觉很吃力,语言难以规范,请见谅了)。也就是说,如果某次访问中包含了Page = Page A的hit,那么,这次访问将不在细分后的数据集中。
事实上,得到这个数据如果不通过细分来实现,也是非常容易,用Total Visits – Visits of Page A,得到的结果便是完全没有访问过Page A的Visits了。
细分后,我们来看看Page A的数据情况,顺便验证下细分是否正确,
(图片已经PS处理,数据为模拟数据)
如上图所示,细分后得到的Total Visits 是9,310,750,而未细分的话,得到的Total Visits是10,041,929,两者之差正好是未细分时Page A的Visits 731,179,因此,细分成功。
顺便提一下,不要试图用下面的规则来得到这个数据,也不要试图把Visit Container修改成Page View Container,想一想为什么吧,我就先不多说了。
接着,我们继续尝试第二项任务,即细分出“看且仅看了Page A 1次的访问”。
我们可能试图用以下规则来实现,
乍一看,还真像那么回事,我们先直接看看结果如何,
(图片已经PS处理,数据为模拟数据)
有没有发现,我们所期望的“看且仅看了Page A 1次的访问”,其结果竟然与Page A Single Page Visits(访问且仅访问了Page A的访问数量)相同,这说明我们的规则:Page Views equals 1,作用于整个visit,限定了符合规则的访问必须仅包含1个Page View,而并非如我们所愿,用于限定Page A的Page Views为1 。
到这里,我想实验可以结束了,之后的任务也同样无法完成了。由于近两年较少使用GA,因此我并不确定GA中是否可以实现这样的细分,但是对于Omniture,我有至少99%的Confidence说这个细分是无法实现的(经过针对性的部署的除外)。
还没完,来试试总结出一个更具普遍性的结论:我们可以细分出某个特定变量发生过特定次数的访问/访客,但无法细分出某个特定变量的某个特定值发生过特定次数的访问/访客。
用这个结论来解释这个案例的话,那就是我们可以细分出Page变量发生过X次(Page Views = X)的访问,但无法细分出Page变量的值为A且发生过X次Page=A的访问。
这个案例就到这里结束了,如果你有任何不同意见,请尽管拍砖,我虽然很坚信这个细分确实无法实现,但我更希望我的想法是错误的。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07