
物联网和大数据带来前所未有的新价值
计算变革 万物智能
在这场计算变革中,我观测到几大领域的蓬勃发展势头。首先是数据中心。无论是今天的移动器件,还是将来的物联网以及可穿戴技术的应用,都会带来信息指数性的增长。谈及此点,可以做个简单回顾,在过去的几十年当中,晶体管集成的指数性增长,使得集成电路行业产生了爆发型增长,英特尔和众多半导体公司受益其中,摩尔定律也得以很好地体现和延续。我们相信,在未来几十年,这个原子集成和比特的爆发增长将导致物联网、可穿戴产业的普及,创造出万物智能的新商机,是史无前例的商业机会。所以基于高计算性能的数据中心是英特尔会继续稳健推进的领域之一。
第二是个人终端和移动设备。从1998年PC互联网应用到2008年移动互联网兴起,最明显的变革当属硬件形态的变化。业内人士预测,到2018年一个物联网天地将呈现出来。对此,英特尔将会延续在PC时代的发展理念,即围绕用户体验进行基于终端设备的软硬件创新,并在未来加大这方面的投资。
工业物联网和以可穿戴设备为代表的消费物联网,两者都蕴含着巨大商机——在过去一年之内,大家不难看到全球各大公司,无论是互联网还是硬件企业,对这个领域的关注热度也急剧增长。借助超过30年的嵌入式计算积累、全面的端到端解决方案以及软硬协同优势,英特尔也在这一领域积极布局,与产业伙伴一道探索最佳的技术创新和商业模式。
物联网不仅是硬件的世界,也不只是互联网的世界,而是基于硬件与互联网的结合并通过数据分析而呈现的世界。如今摩尔定律已经能够使计算能力被嵌入到万物当中,从而产生庞大的数据量,创造了大数据时代,但也带来了新的挑战。所以,大数据分析和价值挖掘就与物联网相生相伴,与企业产能效率和盈利也直接相关。从独立、零散的单点设备到现在万物互联的巨大变化,物联网的商业模式、行业发展都将非常复杂,比技术创新更有挑战,需要信息技术和运营模式的融合创新。
四大产业 促进升级
第一是制造业。就中国国情来讲,制造业是与国民经济增长最为密切相关的一个行业,我们的关注点主要聚焦在系统整合,既涉及到负载整合,保障数据的安全可信,也关注通过优化工厂配置来提高生产能力和效率。其实,无论在工业、制造还是能源领域,物联网的部署、应用在很大程度上都是围绕效率展开的。我曾在晶元和封装测试工厂工作过,早在多年以前,英特尔就已成功将“物联网”技术应用于工厂。当时我们在全球有几十个工厂,通过数据互联,能够以更快的速度发现问题,进行工艺调整,大幅节省成本和提高合格率。
第二是交通运输业。从七年以前英特尔开始关注车载娱乐系统,并将无人驾驶作为发展愿景,这是因为无人驾驶需要很多的计算和视频技术,需要传统制造和IT技术的整合,而这正是英特尔的优势所在。同时,英特尔还着眼于交通运输效率的提升,助力物流的优化和整个交通服务平台的整合,进而在一定程度上减少环境污染。
第三是零售业。零售业智能化除了能够用到硬件之外,还关注个性化购物体验和需求响应的提高,比如门店怎么布局、如何应用IT技术满足业务增长和客户需求。我们的零售与数字标牌业务部门虽然只有5年历史,现在整个架构方面已经是全球领先。无论是信息亭、零售亭、自动售货机、咖啡机还是智能白板,都可以被赋予更加鲜活的生命。
最后是智能家居和楼宇。在中国,智能家居是一个热门产业,业务涵盖了家庭娱乐、健康、安全与自动化等细分市场,还涉及到能源和公用事业等领域。这些无不体现着英特尔对人们美好生活、对社会可持续发展的关注。
此外,我们积极关注视觉计算在包括安防、交通、零售、智能家居、智慧城市等诸多领域的应用。所谓“百闻不如一见”,视觉计算是帮助嵌入式系统实现智能化、真正连至物联网的重要手段之一,它使机器具备了相当于人类视觉的能力,同时也使人类在机器的协助下看得更清楚、分析得更准确。当然,视觉计算远非安装几个摄像头那么简单。除了捕获数据,还要从中充分挖掘新知,在此基础上开发更多应用。以交通为例,我们通过将摄像设备中车流的数据和空气质量传感器中的数据进行相关性分析,就可以通过调整信号灯的时间,优化车辆在路口等待的时间,减少排放和污染。
系统整合 发挥生态圈力量
系统整合、让现有设备更加智能是大势所趋,物联网和大数据也正在带来前所未有的新价值,英特尔将继续发挥从设备到云端完善而领先的智能互联技术,并携手不断壮大的产业伙伴和创客、开发者群体,以物联网创新推动行业变革,以万物互联帮助人们创造丰富多彩的生活和更加美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19