京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网和大数据带来前所未有的新价值
计算变革 万物智能
在这场计算变革中,我观测到几大领域的蓬勃发展势头。首先是数据中心。无论是今天的移动器件,还是将来的物联网以及可穿戴技术的应用,都会带来信息指数性的增长。谈及此点,可以做个简单回顾,在过去的几十年当中,晶体管集成的指数性增长,使得集成电路行业产生了爆发型增长,英特尔和众多半导体公司受益其中,摩尔定律也得以很好地体现和延续。我们相信,在未来几十年,这个原子集成和比特的爆发增长将导致物联网、可穿戴产业的普及,创造出万物智能的新商机,是史无前例的商业机会。所以基于高计算性能的数据中心是英特尔会继续稳健推进的领域之一。
第二是个人终端和移动设备。从1998年PC互联网应用到2008年移动互联网兴起,最明显的变革当属硬件形态的变化。业内人士预测,到2018年一个物联网天地将呈现出来。对此,英特尔将会延续在PC时代的发展理念,即围绕用户体验进行基于终端设备的软硬件创新,并在未来加大这方面的投资。
工业物联网和以可穿戴设备为代表的消费物联网,两者都蕴含着巨大商机——在过去一年之内,大家不难看到全球各大公司,无论是互联网还是硬件企业,对这个领域的关注热度也急剧增长。借助超过30年的嵌入式计算积累、全面的端到端解决方案以及软硬协同优势,英特尔也在这一领域积极布局,与产业伙伴一道探索最佳的技术创新和商业模式。
物联网不仅是硬件的世界,也不只是互联网的世界,而是基于硬件与互联网的结合并通过数据分析而呈现的世界。如今摩尔定律已经能够使计算能力被嵌入到万物当中,从而产生庞大的数据量,创造了大数据时代,但也带来了新的挑战。所以,大数据分析和价值挖掘就与物联网相生相伴,与企业产能效率和盈利也直接相关。从独立、零散的单点设备到现在万物互联的巨大变化,物联网的商业模式、行业发展都将非常复杂,比技术创新更有挑战,需要信息技术和运营模式的融合创新。
四大产业 促进升级
第一是制造业。就中国国情来讲,制造业是与国民经济增长最为密切相关的一个行业,我们的关注点主要聚焦在系统整合,既涉及到负载整合,保障数据的安全可信,也关注通过优化工厂配置来提高生产能力和效率。其实,无论在工业、制造还是能源领域,物联网的部署、应用在很大程度上都是围绕效率展开的。我曾在晶元和封装测试工厂工作过,早在多年以前,英特尔就已成功将“物联网”技术应用于工厂。当时我们在全球有几十个工厂,通过数据互联,能够以更快的速度发现问题,进行工艺调整,大幅节省成本和提高合格率。
第二是交通运输业。从七年以前英特尔开始关注车载娱乐系统,并将无人驾驶作为发展愿景,这是因为无人驾驶需要很多的计算和视频技术,需要传统制造和IT技术的整合,而这正是英特尔的优势所在。同时,英特尔还着眼于交通运输效率的提升,助力物流的优化和整个交通服务平台的整合,进而在一定程度上减少环境污染。
第三是零售业。零售业智能化除了能够用到硬件之外,还关注个性化购物体验和需求响应的提高,比如门店怎么布局、如何应用IT技术满足业务增长和客户需求。我们的零售与数字标牌业务部门虽然只有5年历史,现在整个架构方面已经是全球领先。无论是信息亭、零售亭、自动售货机、咖啡机还是智能白板,都可以被赋予更加鲜活的生命。
最后是智能家居和楼宇。在中国,智能家居是一个热门产业,业务涵盖了家庭娱乐、健康、安全与自动化等细分市场,还涉及到能源和公用事业等领域。这些无不体现着英特尔对人们美好生活、对社会可持续发展的关注。
此外,我们积极关注视觉计算在包括安防、交通、零售、智能家居、智慧城市等诸多领域的应用。所谓“百闻不如一见”,视觉计算是帮助嵌入式系统实现智能化、真正连至物联网的重要手段之一,它使机器具备了相当于人类视觉的能力,同时也使人类在机器的协助下看得更清楚、分析得更准确。当然,视觉计算远非安装几个摄像头那么简单。除了捕获数据,还要从中充分挖掘新知,在此基础上开发更多应用。以交通为例,我们通过将摄像设备中车流的数据和空气质量传感器中的数据进行相关性分析,就可以通过调整信号灯的时间,优化车辆在路口等待的时间,减少排放和污染。
系统整合 发挥生态圈力量
系统整合、让现有设备更加智能是大势所趋,物联网和大数据也正在带来前所未有的新价值,英特尔将继续发挥从设备到云端完善而领先的智能互联技术,并携手不断壮大的产业伙伴和创客、开发者群体,以物联网创新推动行业变革,以万物互联帮助人们创造丰富多彩的生活和更加美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23