
大数据、机器学习、物联网有何关系_数据分析师
很对人都会说到“物联网”、“大数据”和“机器人”等趋势。我想要说,其实这些趋势是相互联系在一起的,联系成一个大趋势,就像“万有理论”,在这个链条里,每一环都会对下一环产生影响,如此产生积极的循环。
各种连接的设备里的传感器会产生大量数据,海量数据使得机器学习成为可能,机器学习的结果就是AI,而AI又指导机器人去更精确地执行任务,机器人的行动又会触发传感器。这整个就是一个完整的循环。
1. 传感器产生数据
到 2014 年,连接到互联网的设备超过了世界人口的总和。 [大数据技术]Cisco 预测,到 2020 年,将有 500 亿个相互连接的设备。而这些设备中大多都会安传感器,可能用 Electric Imp 内嵌传感器,或者用Estimote外接一个传感器。
设备中的传感器会产生前所未有的海量数据。
2. 数据支撑机器学习
在 2020 年,预计有 35ZB 的数据产生,也就是 2009 年数据量的 44 倍。到时候,不管是结构化的、或更可能是没有结构化的数据都可以通过机器来处理,从而获得大量洞见。
3. 机器学习改善 AI
机器学习依靠数据处理和模式识别,从而让计算机不需要编程就能去学习。现在的海量数据和计算能力都在驱使机器学习的突破。
机器学习的十足威力,看看 Google 就知道了。[国外大数据]Google就是利用机器学习,把法国每一个企业的位置、每一个住房、每一条街都绘制在地图上了。整个过程只需 1 个小时。
4. 人工智能指导机器人行动
随着计算机已经在象棋和路标方面做得比人类好了,我们就有理由对未来有更多期待。随着更多的传感器采集到的数据越来越多,这能优化更多的机器学习算法,从而我们可以合乎逻辑地推断,与机器人结合的计算机执行任务的能力会呈指数级增长。
5. 机器人采取行动
大数据时代不仅数以百计的公司在制作可以完成各种工作的机器人,机器人本身也会变得越来越智能, 而且借助 AI 的进步,还能完成很多我们梦寐以求的任务。
6. 行动触发传感器
机器采取行动触发传感器来收集数据,从而整个循环就完整了。
这就是我提出来的技术领域的“万有理论”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03