华尔街害怕了!大数据让股市从此没有秘密
如同被互联网颠覆的一个个行业那样,那些动则赚取数百万美金、生活在金钱帝国最顶端的投行基金们,恐怕也将面临从神坛跌落的命运。最近Forbs、FTimes等国外著名金融刊物以“华尔街人神共愤的叛徒”报道了Kensho这家科技公司,实际上,早在12年Kensho已经让华尔街紧张了一轮,它所做的,是将大量的经济数据、政治事件、金融交易信息以及通过复杂的金融模型运算,可以像谷歌搜索一般的简单方式提供答案,比如苹果发布iPhone6哪些股票将涨。
对于金融行业来说,虽然随机性的因素非常之多,但并非没有确定性的因子。如同天气预报那样,你知道的有效信息越多,就越能知道结果。没有人能否认信息的重要性,谁提前一步知道政策的走向、公司的重大变化,他将具备相当的优势,所以在很长一段时间里,金融都是信息手段最积极的使用者(电报、电话、网络)。
不过在传媒日益发达的当下,除了少量被人为控制的内容,信息本身已经不是稀缺,这时候,更大的问题是信息过多,面对如此庞大规模的数据,普通公众是难以处理的。在这样的情况下,有两个因素反而成为核心能力,一个是如何完整的获得海量信息,另一个是如何从信息转换到结果的预测模型。Kensho做的,就如同天气预报那样,不断优化模型、灌入海量信息,然后给出结果。
所以,一旦Kensho成功,那金融机构的分析师和研究人员将面临危机,这就是为何对冲基金们纷纷指责Kensho为叛徒,“如果你发现了这种关系,那你就利用这种关系来交易!不要公开它啊!你这样导致大家都无法进行套利交易。”
不过可惜的是,Kensho似乎并不打算像谷歌那样完全向公众公开他们的成果,而是计划将软件租赁给基金经理和买方公司,并且参照彭博社和路透社的方式收取高昂的软件使用费。最新报道的重点,实质上是高盛花了1500万美元成为Kensho的最大股东。这可能让金融精英们松了一口气,至少,技术野蛮人暂时被招安了,这些顶尖基金和投行获得超额利润的法宝,仍然要花巨额费用去买,仍然留在一个较小的圈子里。
这样的故事听上去很让人沮丧,不过,随着大数据技术基础设施的日益完善,我相信一定还将出现更多这样的创新者。技术是让世界更扁平,是让信息鸿沟变得更小,而不是把秘密封闭起来。他们也许会发现,将这些华尔街精英们的秘密工具开放给大众,将获得更大成就。这些故事,在很多领域都发生过,那些被小心翼翼供奉着的行业潜规则以及因此带来的金饭碗,都被一一打破,技术不断压缩着每一个“介质”过去通过信息不对称而获得的利润。
当真正的“背叛者”出现时,当这些强大的能力完全开放,金融业恐怕真的会被改写。
一方面,大量分析师的工作被取代。面对机器对海量信息的分析能力,分析师是难以匹敌的,甚至机器不仅仅具有经济数据的量化分析,机器还能对“人”这个最具不确定性的数据进行分析,通过对无数人在互联网上的行为倾向,获得趋势信息,实际上,这项技术已经被应用到国内的大数据基金里,前有百度联手广发基金推出百发100指数,后有新浪联手南方基金推出大数据100和300指数。如果开放这些能力,任何一个普通人都能具备一个分析师团队的资源,这时候金融机构的职能又将转变成什么?研发模型?
另一方面,金融获利模式将会改变。所谓不确定性越大,收益越高,但是某些对大众不确定的东西未必是真正不确定的,这种差异就会成为优势一方的利益来源,当技术抹平这种不确定性的差异化时,要获得超额收益将会非常难。如同大家都能看到卫星云图,都知晓冷空气要来了,那么冷空气来的时候大家都能提前做好准备,大家的获益是一样的,除非你不去看这个信息。越透明博弈越难,越确定收益越低,这样,基于技术的因素,短期的预测可能将相当的确定,那么短期的收益波动越小。而大的收益恐怕得看更长期,这里面随机的影响更大,机器能给出的确定性建议更小。
更深层次上,当技术变成了一种预测的神话之后,可能还会产生非常大的社会影响。与天气预报这类完全是客观因素的数据分析预测不同,金融不仅仅受客观因素影响,还严重的被人群的选择所左右,而技术分析预测本身又会影响人的选择,从而影响结果,这样技术可能成为正反馈的放大器。因此,当技术分析准确到让人们深信不疑时,技术预测可能不仅仅是预测未来,而是影响未来。举个例子,技术分析预测某个公司价值被低估,那么深信不疑的人们的行为就是倾向于买入,这就导致某个公司上涨,从而又反过来证明技术分析正确;再比如,当技术给出非常信服的结果某个股票价值10元,那么它会迅速的到达这个位置,既没人愿意更高价买,也没人愿意更低价卖。
以上只是作为一个非金融专业人士的畅想,我们乐见这一天的到来,Kensho的出现说明技术已经在不断的逼近现实,下一步等待的,是看哪个公司能打出向公众开放的旗帜。不过,这样的技术出现又是可怕的,虽然人类生而不希望不确定,不希望冒风险,但是在我们内心深处,又希望未来是不确定的,不确定的世界,才充满了魅力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15